首页> 外文OA文献 >From surface to volume plasmons in hyperbolic metamaterials: General existence conditions for bulk high-k waves in metal-dielectric and graphene-dielectric multilayers.
【2h】

From surface to volume plasmons in hyperbolic metamaterials: General existence conditions for bulk high-k waves in metal-dielectric and graphene-dielectric multilayers.

机译:从双曲线超材料中的表面到体积等离子体:金属 - 电介质和石墨烯 - 电介质多层中的体积高k波的一般存在条件。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We theoretically investigate general existence conditions for broadband bulk large-wave-vector (high- k ) propagating waves (such as volume plasmon polaritons in hyperbolic metamaterials) in subwavelength periodic multilayer structures. Describing the elementary excitation in the unit cell of the structure by a generalized resonance pole of a reflection coefficient and using Bloch’s theorem, we derive analytical expressions for the band of large-wave-vector propagating solutions. We apply our formalism to determine the high- k band existence in two important cases: the well-known metal-dielectric and recently introduced graphene-dielectric stacks. We confirm that short-range surface plasmons in thin metal layers can give rise to hyperbolic metamaterial properties and demonstrate that long-range surface plasmons cannot. We also show that graphene-dielectric multilayers tend to support high- k waves and explore the range of parameteres for which this is possible, confirming the prospects of using graphene for materials with hyperbolic dispersion. The approach is applicable to a large variety of structures, such as continuous or structured microwave, terahertz, and optical metamaterials.
机译:我们从理论上研究了亚波长周期多层结构中宽带大体积波矢量(high-k)传播波(例如双曲超材料中的体积等离激元极化子)的一般存在条件。通过使用反射系数的广义谐振极点并使用Bloch定理描述结构的晶胞中的基本激发,我们导出了大波矢量传播解带的解析表达式。在两种重要情况下,我们运用形式主义来确定高k带的存在:众所周知的金属电介质和最近推出的石墨烯电介质堆栈。我们确认,薄金属层中的短距离表面等离子体激元可以引起双曲线超材料的特性,并证明长距离表面等离子体激元不能。我们还表明,石墨烯-介电多层体倾向于支持高k波,并探索了可能的参数范围,这证实了将石墨烯用于具有双曲线分散性的材料的前景。该方法适用于多种结构,例如连续或结构化的微波,太赫兹和光学超材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号