首页> 外文OA文献 >Modeling open nanophotonic systems using the Fourier modal method: Generalization to 3D Cartesian coordinates
【2h】

Modeling open nanophotonic systems using the Fourier modal method: Generalization to 3D Cartesian coordinates

机译:使用傅立叶模态方法建模开放式纳米光子系统:推广到3D笛卡尔坐标

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recently, an open geometry Fourier modal method based on a new combination ofan open boundary condition and a non-uniform $k$-space discretization wasintroduced for rotationally symmetric structures providing a more efficientapproach for modeling nanowires and micropillar cavities [J. Opt. Soc. Am. A33, 1298 (2016)]. Here, we generalize the approach to three-dimensional (3D)Cartesian coordinates allowing for the modeling of rectangular geometries inopen space. The open boundary condition is a consequence of having an infinitecomputational domain described using basis functions that expand the wholespace. The strength of the method lies in discretizing the Fourier integralsusing a non-uniform circular "dartboard" sampling of the Fourier $k$ space. Weshow that our sampling technique leads to a more accurate description of thecontinuum of the radiation modes that leak out from the structure. We alsocompare our approach to conventional discretization with direct and inversefactorization rules commonly used in established Fourier modal methods. Weapply our method to a variety of optical waveguide structures and demonstratethat the method leads to a significantly improved convergence enabling moreaccurate and efficient modeling of open 3D nanophotonic structures.
机译:最近,为旋转对称结构引入了基于开放边界条件和不均匀的$ k $空间离散化的新组合的开放几何傅里叶模态方法,为建模纳米线和微柱腔提供了更有效的方法[J.选择。 Soc。上午。 A33,1298(2016)]。在这里,我们概括了三维(3D)笛卡尔坐标的方法,允许在开放空间中对矩形几何图形进行建模。开放边界条件是使用可扩展整个空间的基函数描述无限计算域的结果。该方法的优势在于使用傅立叶$ k $空间的非均匀圆形“飞镖”采样离散傅立叶积分。我们表明,我们的采样技术可以更准确地描述从结构泄漏出的辐射模式的连续谱。我们还将常规离散化方法与已建立的傅立叶模态方法中常用的直接和逆分解规则进行比较。我们将我们的方法应用于各种光波导结构,并证明该方法可显着改善会聚性,从而能够对开放式3D纳米光子结构进行更准确和有效的建模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号