首页> 外文会议>Conference on Lasers and Electro-Optics Europe;European Quantum Electronics Conference >Modelling open nanophotonic structures using the Fourier modal method in infinite domains
【24h】

Modelling open nanophotonic structures using the Fourier modal method in infinite domains

机译:在无限域中使用傅立叶模态方法对开放式纳米光子结构进行建模

获取原文

摘要

Summary form only given. The Fourier modal method in Cartesian coordinates uses Fourier series as the expansion basis [1]. This leads to periodic boundary conditions, which is advantageous for periodic structures like photonic crystals. However, for modelling open geometries periodic boundary conditions leads to parasitic reflections from the leaky modes into the computational domain. This can be overcome by using absorbing boundaries, such as perfectly matched layers (PMLs), but convergence of these PML boundaries towards an open geometry limit is generally not obtained. [2]. To avoid the need for PMLs open boundary conditions can be used and recently this was developed for structures having cylindrical symmetry [3], where a non-uniform sampling of the k-space was shown to converge much faster than for the standard equidistant k-space discretization. The open boundaries are introduced by using Fourier integrals instead of Fourier series as the expansion basis for the eigenmodes.In this work we have developed an open-geometry Fourier modal method with open boundary conditions in 3D Cartesian coordinates [5]. Our results show that a non-uniform sampling of the k-space is essential to obtain good convergence especially for the leaky modes. This is seen in Fig. 1, where the emission rates into the guided and radiating modes and the beta factor are computed using (a) a similar non-uniform discretization of the k-space as in [3] and (b) using an equidistant k-grid employing the direct rule and Li's inverse rule for Fourier factorization [4]. The emission rate into the guided modes is well described with both discretization schemes, but the radiation modes are poorly described with the equidistant grid. Additionally, we will discuss which type of geometries benefits from the open-geometry Fourier modal method.
机译:仅提供摘要表格。笛卡尔坐标系中的傅立叶模态方法以傅立叶级数为展开基础[1]。这导致周期性边界条件,这对于诸如光子晶体的周期性结构是有利的。然而,对于建模开放几何,周期性边界条件会导致从泄漏模式到计算域的寄生反射。这可以通过使用吸收边界(例如完全匹配的层(PML))来克服,但是通常无法获得这些PML边界向开放几何限制的收敛。 [2]。为了避免对PML的需要,可以使用开放边界条件,近来这是针对具有圆柱对称性的结构而开发的[3],其中,k空间的非均匀采样收敛速度比标准等距k-要快得多。空间离散化。通过使用傅立叶积分代替傅立叶级数作为本征模的展开基础来引入开放边界。在这项工作中,我们开发了一种在3D笛卡尔坐标系中具有开放边界条件的开放几何傅立叶模态方法[5]。我们的结果表明,k空间的非均匀采样对于获得良好的收敛性至关重要,尤其是对于泄漏模式。从图1中可以看出,在导波模式和辐射模式下的发射率和β因子是使用(a)与[3]和(b)相似的k空间的非均匀离散化来计算的,等距离k网格采用直接法则和李氏逆法则进行傅里叶分解[4]。两种离散化方案都很好地描述了进入引导模式的发射率,而等距网格很难描述辐射模式。此外,我们将讨论开放几何傅立叶模态方法对哪种类型的几何有益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号