首页> 外文OA文献 >Modeling of sulfation of potassium chloride by ferric sulfate addition during grate-firing of biomass
【2h】

Modeling of sulfation of potassium chloride by ferric sulfate addition during grate-firing of biomass

机译:生物质炉排烧成硫酸铁加氯化钾的模拟

摘要

Potassium chloride, KCl, formed from critical ash-forming elements released during combustion may lead to severe ash deposition and corrosion problems in biomass-fired boilers. Ferric sulfate, Fe2(SO4)3 is an effective additive, which produces sulfur oxides (SO2 and SO3) to convert KCl to the less harmful K2SO4. In the present study the decomposition of ferric sulfate is studied in a fast-heating rate thermogravimetric analyzer (TGA), and a kinetic model is proposed to describe the decomposition process. The yields of SO2 and SO3 from ferric sulfate decomposition are investigated in a laboratory-scale tube reactor. It is revealed that approximately 40% of the sulfur is released as SO3, the remaining fraction being released as SO2. The proposed decomposition model of ferric sulfate is combined with a detailed gas phase kinetic model of KCl sulfation, and a simplified model of K2SO4 condensation in order to simulate the sulfation of KCl by ferric sulfate addition during grate-firing of biomass. The simulation results show good agreements with the experimental data obtained in apilot-scale biomass grate-firing reactor, where different amounts of ferric sulfate was injected on the grate or into the freeboard. In addition, the simulations of elemental sulfur addition on the grate fit well with the experimental data. The results suggest that the SO3 released from ferric sulfate decomposition is the main contributor to KCl sulfation, and that the effectiveness of the ferric sulfate addition is sensitive to actual temperature in the system. When the ferric sulfate is injected on the grate, the majority of the released SO3 is rapidly converted to SO2 due to the high temperatures, resulting in a low effectiveness similar to that of elementary sulfur addition on the grate. On the other hand, when the ferric sulfate is injected into the freeboard where the temperaturesare below 1050oC, the majority of the released SO3 contributes to the formation of K2SO4, leading to a high effectiveness in KCl destruction. Overall, the model developed in this work facilitates an optimal use of ferric sulfate in biomass combustion.
机译:由燃烧过程中释放的重要灰分形成元素形成的氯化钾KCl可能导致严重的灰分沉积和生物质燃料锅炉的腐蚀问题。硫酸铁Fe2(SO4)3是有效的添加剂,可产生氧化硫(SO2和SO3),将KCl转化为危害较小的K2SO4。在本研究中,使用快速升温速率热重分析仪(TGA)研究了硫酸铁的分解,并提出了动力学模型来描述分解过程。在实验室规模的管式反应器中研究了硫酸铁分解产生的SO2和SO3的产率。结果表明,大约40%的硫以SO3的形式释放,其余部分以SO2的形式释放。拟议的硫酸铁分解模型与详细的KCl硫酸化气相动力学模型和简化的K2SO4冷凝模型相结合,以模拟生物质炉排烧制过程中添加硫酸铁而产生的KCl硫酸化。模拟结果表明,与在中型规模生物质炉排燃烧反应器中获得的实验数据吻合良好,在该反应器中,将不同量的硫酸铁注入炉排或干舷。另外,炉排上元素硫的添加模拟与实验数据非常吻合。结果表明,硫酸铁分解释放的SO3是KCl硫酸盐化的主要贡献者,并且硫酸铁添加的有效性对系统中的实际温度敏感。当将硫酸铁喷射到炉排上时,由于高温,大部分释放的SO3迅速转化为SO2,导致效率低下,类似于在炉排上添加元素硫的效率低。另一方面,将硫酸铁注入温度低于1050oC的干舷时,大部分释放的SO3有助于K2SO4的形成,从而导致KCl的高效破坏。总体而言,这项工作开发的模型有助于在生物质燃烧中优化使用硫酸铁。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号