首页> 外文OA文献 >Precise Time-of-Flight Calculation For 3D Synthetic Aperture Focusing
【2h】

Precise Time-of-Flight Calculation For 3D Synthetic Aperture Focusing

机译:三维合成孔径聚焦的精确飞行时间计算

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Conventional linear arrays can be used for 3D ultrasound imaging, by moving the array in the elevation direction and stacking the planes in a volume. The point spread function (PSF) is larger in the elevation plane, as the aperture is smaller and has a fixed elevation focus. Resolution improvements in elevation can be achieved by applying synthetic aperture (SA) focusing to the beamformed in-plane RF-data. The method uses a virtual source (VS) placed at the elevation focus for post-beamforming. This has previously been done in two steps, in plane focusing followed by SA post-focusing in elevation, because of a lack of a simple expression for the exact time of flight (ToF). This paper presents a new method for calculating the ToF for a 3D case in a single step using a spherical defocused emission from a linear array. The method is evaluated using both simulated data obtained by Field II and phantom measurements using the RASMUS experimental scanner. For the simulation, scatterers were placed from 20 to 120 mm of depth. A point and a cyst phantom were scanned by translating a 7 MHz linear array in the elevation direction. For a point placed at (25,8, 75) mm relative to the transducer, the mean error between the calculated and estimated ToF is 0.0129 mus (0.09A), and the standard deviation of the ToF error is 0.0049A. SA focusing improves both contrast and resolution. For simulated scatterers at depths of 40 and 70 mm the FWHM is 83.6% and 46.8% of the FWHM without elevation SA focusing. The main-lobe to side-lobe energy ratio (MLSLR) for the scatterers is 32.3 dB and 29.1 dB. The measurement of a PSF phantom at a depth of 65 mm shows a relative FWHM of 27.8%. For an elevation sampling distance of 0.63 mm, the MLSLR for the two simulated scatterers is 26.4 dB and 27.9 dB. For the point phantom the MLSLR is 16.3 dB. If the elevation sampling distance is increased to 0.99 mm, the two simulated scatterers have a MLSLR of 21.1 dB and 15.8 dB respectively, and the point pha- ntom has an MLSLR of 5.2 dB. The cyst phantom shows an improvement of 5.8 dB in contrast to noise ratio, for a 4 mm cyst, when elevation focusing is applied.
机译:通过在仰角方向上移动阵列并将平面堆叠成一定体积,可以将常规线性阵列用于3D超声成像。点扩展函数(PSF)在高程平面中较大,因为光圈较小并且具有固定的高程焦点。通过将合成孔径(SA)聚焦应用于波束形成的平面内RF数据,可以实现高程分辨率的提高。该方法使用放置在高程焦点处的虚拟源(VS)进行后期波束形成。由于缺少精确的飞行时间(ToF)的简单表达式,因此以前在平面聚焦和SA在仰角后聚焦两个步骤中完成了此操作。本文提出了一种新方法,可使用线性阵列的球形散焦发射,一步计算3D情况的ToF。使用通过Field II获得的模拟数据和使用RASMUS实验扫描仪进行体模测量,可以评估该方法。为了进行模拟,将散射体放置在20到120毫米的深度。通过在仰角方向平移7 MHz线性阵列来扫描点和囊肿体模。对于相对于换能器(25,8,75)mm处的点,计算出的和估计的ToF之间的平均误差为0.0129 mus(0.09A),ToF误差的标准偏差为0.0049A。 SA聚焦可同时提高对比度和分辨率。对于深度为40和70 mm的模拟散射体,FWHM分别为没有高程SA聚焦的FWHM的83.6%和46.8%。散射体的主瓣与旁瓣能量比(MLSLR)为32.3 dB和29.1 dB。在深度为65 mm时对PSF体模的测量显示相对FWHM为27.8%。对于0.63 mm的高程采样距离,两个模拟散射体的MLSLR为26.4 dB和27.9 dB。对于点幻影,MLSLR为16.3 dB。如果将高程采样距离增加到0.99 mm,则两个模拟散射体的MLSLR分别为21.1 dB和15.8 dB,点相位的MLSLR为5.2 dB。当应用仰角聚焦时,对于4 mm的囊肿,与噪声比相比,囊肿幻影显示改善了5.8 dB。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号