首页> 外文OA文献 >High-Q submicron-diameter quantum-dot microcavity pillars for cavity QED experiments
【2h】

High-Q submicron-diameter quantum-dot microcavity pillars for cavity QED experiments

机译:用于腔QED实验的高Q亚微米直径量子点微腔柱

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The semiconductor quantum dot - microcavity pillar system represents an attractive platform for studying fundamental light-matter interaction as well as for demonstrating novel quantum devices, ultra-low threshold lasers and sub-ps optical switching. In this work we present a novel tapered GaAs/AlAs micropillar design where Bloch-wave engineering is employed to significally enhance the cavity mode confinement in the submicron diameter regime. We demonstrate a record-high vacuum Rabi splitting of 85 µeV of the strong coupling for pillars incorporating quantum dots with modest oscillator strength f ≈ 10. It is well-known that light-matter interaction depends on the photonic environment, and thus proper engineering of the optical mode in microcavity systems is central to obtaining the desired functionality. In the strong coupling regime, the visibility of the Rabi splitting is described by the light-matter coupling constant g proportional to Q/√V, where Q is the quality factor and V is the mode volume. A high Q and a low V are thus desirable.The mode volume V can be minimized by reducing the pillar diameter. However, for the standard micropillar design, the poor mode matching between the cavity mode and the DBR Bloch mode limits the Q to about 2000. [1] In our optimized design we have replaced the standard λ-spacer with a 3 segment tapered region. The layer thicknesses of these GaAs/AlAs segments are gradually reduced towards the center, effectively detuning the bandgap relative to that of the DBRs and allowing for a single localized mode inside the cavity. The fundamental Bloch mode experiences an adiabatic transition, leading to an improved mode matching and a reduced coupling to propagating Bloch modes in the DBRs. The central GaAs layer incorporating quantum dots is only 60 nm thick corresponding to ≈ λ/5, and regular cavity concepts are thus insufficient to explain the localization of the cavity mode, demonstrating the necessity of Bloch-wave formalism in the analysis of the design.We compare our adiabatic design to a reference incorporating a λ-spacer. A theoretical improvement of Q of two orders of magnitude and an experimentally measured improvement of ≈ 5, limited by fabrication imperfections, are obtained. Thus our novel approach allows us to demonstrate remarkably high quality factors exceeding 10,000 for MP cavities with diameters below 1 µm. [2] Whereas previous studies of strong coupling in micropillars relied on quantum dots with high oscillator strengths f 50, our advanced design allows for the observation of strong coupling for submicron diameter quantum dot-pillars with standard f ≈ 10 oscillator strength. A quality factor of 13600 and a vacuum Rabi splitting of 85 µeV are observed for a small mode volume micropillar with a diameter of 850 nm.
机译:半导体量子点-微腔柱系统是一个有吸引力的平台,可用于研究基本的光-物质相互作用以及演示新型量子器件,超低阈值激光器和sub-ps光学开关。在这项工作中,我们提出了一种新颖的锥形GaAs / AlAs微柱设计,其中采用了Bloch波工程技术来显着增强亚微米直径范围内的腔模约束。我们证明了结合有适度振荡器强度f≈10的量子点的柱的强耦合的高耦合真空度Rabi分裂为85 µeV。众所周知,光物质相互作用取决于光子环境,因此对硅的正确设计微腔系统中的光学模式对于获得所需功能至关重要。在强耦合状态下,拉比分裂的可见性由与Q /√V成比例的光物质耦合常数g来描述,其中Q是品质因数,V是众数。因此,高Q值和低V值是合乎需要的。可以通过减小柱直径来使模式体积V最小化。但是,对于标准微柱设计,空腔模式和DBR Bloch模式之间的较差模式匹配将Q限制在2000左右。[1]在我们的优化设计中,我们已将标准的λ-间隔器替换为3段锥形区域。这些GaAs / AlAs片段的层厚度朝着中心逐渐减小,从而有效地使带隙相对于DBR失谐,并允许在腔体内实现单一局部模式。基本的Bloch模式经历了绝热过渡,从而改善了模式匹配,并减少了与DBR中传播的Bloch模式的耦合。包含量子点的中心GaAs层厚度仅为60 nm,对应于≈λ/ 5,因此常规的腔体概念不足以解释腔体模式的局限性,这表明在设计分析中必须采用Blochwave形式主义。我们将绝热设计与包含λ垫片的参考进行比较。获得了理论上两个数量级的Q改进和实验测量的≈5的改进(受制造缺陷限制)。因此,我们的新颖方法使我们能够证明直径小于1 µm的MP腔的品质因数超过10,000。 [2]以前对微柱中的强耦合的研究依赖于具有高振荡器强度f> 50的量子点,但我们的先进设计允许观察到具有标准f≈10振荡器强度的亚微米直径量子点-柱的强耦合。对于直径为850 nm的小模量微柱,观察到的质量因数为13600,真空拉比分裂为85 µeV。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号