首页> 外文OA文献 >Coalgebraic Trace Semantics for Buechi and Parity Automata
【2h】

Coalgebraic Trace Semantics for Buechi and Parity Automata

机译:Buechi和奇偶自动机的代数跟踪语义

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Despite its success in producing numerous general results on state-based dynamics, the theory of coalgebra has struggled to accommodate the Buechi acceptance condition---a basic notion in the theory of automata for infinite words or trees. In this paper we present a clean answer to the question that builds on the "maximality" characterization of infinite traces (by Jacobs and Cirstea): the accepted language of a Buechi automaton is characterized by two commuting diagrams, one for a least homomorphism and the other for a greatest, much like in a system of (least and greatest) fixed-point equations. This characterization works uniformly for the nondeterministic branching and the probabilistic one; and for words and trees alike. We present our results in terms of the parity acceptance condition that generalizes Buechiu27s.
机译:尽管成功地在基于状态的动力学上产生了许多一般性的结果,但是余数论一直在努力适应Buechi接受条件-这是自动机理论中无限词或树的基本概念。在本文中,我们为基于无限迹线的“最大”刻画(由Jacobs和Cirstea提出)的问题提供了一个清晰的答案:Buechi自动机的可接受语言由两个换向图刻画,一个用于最小同态图,另一个用于最小同构图。其他最大,最像(最小和最大)定点方程组。对于非确定性分支和概率分支,此特征统一起作用。对于文字和树木都一样。我们根据推广Buechi的奇偶校验接受条件来介绍我们的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号