首页> 外文OA文献 >Using Self-learning and Automatic Tuning to Improve the Performance of Sexual Genetic Algorithms for Constraint Satisfaction Problems
【2h】

Using Self-learning and Automatic Tuning to Improve the Performance of Sexual Genetic Algorithms for Constraint Satisfaction Problems

机译:利用自学习和自动调优提高约束满足问题的性遗传算法性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Currently the parameters in a constraint solver are often selected by hand by experts in the field; these parameters might include the level of preprocessing to be used and the variable ordering heuristic. The efficient and automatic choice of a preprocessing level for a constraint solver is a step towards making constraint programming a more widely accessible technology. Self-learning sexual genetic algorithms are a new approach combining a self-learning mechanism with sexual genetic algorithms in order to suggest or predict a suitable solver configuration for large scale problems by learning from the same class of small scale problems. In this paper, Self-learning Sexual genetic algorithms are applied to create an automatic solver configuration mechanism for solving various constraint problems. The starting population of self-learning sexual genetic algorithms will be trained through experience on small instances. The experiments in this paper are a proof-of-concept for the idea of combining sexual genetic algorithms with a self-learning strategy to aid in parameter selection for constraint programming.
机译:当前,约束求解器中的参数通常是由本领域的专家手动选择的。这些参数可能包括要使用的预处理级别和变量排序启发式。为约束求解器高效而自动地选择预处理级别是迈向使约束编程成为更广泛可访问的技术的一步。自学习性遗传算法是一种将自学习机制与性遗传算法相结合的新方法,目的是通过学习同一类别的小规模问题来建议或预测适用于大规模问题的求解器配置。在本文中,自学习性遗传算法被用来创建一个自动求解器配置机制来解决各种约束问题。自我学习的性遗传算法的入门人群将通过小实例的经验进行培训。本文中的实验是将性遗传算法与自学习策略相结合以帮助选择约束程序参数的想法的概念证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号