An algorithmic meta theorem for a logic and a class C of structuresstates that all problems expressible in this logic can be solvedefficiently for inputs from $C$. The prime example is Courcelleu27sTheorem, which states that monadic second-order (MSO) definableproblems are linear-time solvable on graphs of bounded tree width. Wecontribute new algorithmic meta theorems, which state thatMSO-definable problems are (a) solvable by uniform constant-depthcircuit families (AC0 for decision problems and TC0 for countingproblems) when restricted to input structures of bounded tree depthand (b) solvable by uniform logarithmic-depth circuit families (NC1for decision problems and #NC1 for counting problems) when a treedecomposition of bounded width in term representation is part of theinput. Applications of our theorems include a TC0-completeness prooffor the unary version of integer linear programming with a fixednumber of equations and extensions of a recent result that countingthe number of accepting paths of a visible pushdown automaton lies in#NC1. Our main technical contributions are a new tree automata modelfor unordered, unranked, labeled trees; a method for representing thetree automatau27s computations algebraically using convolution circuits;and a lemma on computing balanced width-3 tree decompositions of treesin TC0, which encapsulates most of the technical difficultiessurrounding earlier results connecting tree automata and NC1.
展开▼
机译:逻辑和结构C类的算法元定理指出,对于$ C $的输入,可以有效地解决此逻辑中可表示的所有问题。最主要的示例是Courcelle u27sTheorem,该定理指出单峰二阶(MSO)可定义问题在有界树宽图上是线性时间可解的。我们提供了新的算法元定理,该定理指出,MSO可定义的问题(a)限于有界树深度的输入结构时,可以通过统一的恒定深度电路族(对于决策问题为AC0,对于计数问题为TC0)可解决,并且(b)通过统一对数可解决当术语表示中有界宽度的树分解是输入的一部分时,深度电路族(用于决策问题的NC1和用于计数问题的#NC1)。我们定理的应用包括针对整数线性规划的一元版本的TC0完备性证明,具有固定数量的方程式和最新结果的扩展,该结果计算可见下推式自动机的接受路径数位于#NC1中。我们的主要技术贡献是针对无序,无等级,标记树的新树自动机模型;一种使用卷积电路代数表示树自动机计算的方法;以及在TC0中计算树的平衡宽度3树分解的引理,它封装了围绕树自动机和NC1的较早结果的大多数技术难题。
展开▼