首页> 外文OA文献 >Inapproximability of Maximum Edge Biclique, Maximum Balanced Biclique and Minimum k-Cut from the Small Set Expansion Hypothesis
【2h】

Inapproximability of Maximum Edge Biclique, Maximum Balanced Biclique and Minimum k-Cut from the Small Set Expansion Hypothesis

机译:最小边双线性,最大平衡双线性和小集扩张假设的最小k-切割的不可近似性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Small Set Expansion Hypothesis (SSEH) is a conjecture which roughly states that it is NP-hard to distinguish between a graph with a small set of vertices whose expansion is almost zero and one in which all small sets of vertices have expansion almost one. In this work, we prove conditional inapproximability results for the following graph problems based on this hypothesis:- Maximum Edge Biclique (MEB): given a bipartite graph G, find a complete bipartite subgraph of G with maximum number of edges. We show that, assuming SSEH and that NP != BPP, no polynomial time algorithm gives n^{1 - epsilon}-approximation for MEB for every constant epsilon > 0.- Maximum Balanced Biclique (MBB): given a bipartite graph G, find a balanced complete bipartite subgraph of G with maximum number of vertices. Similar to MEB, we prove n^{1 - epsilon} ratio inapproximability for MBB for every epsilon > 0, assuming SSEH and that NP != BPP.- Minimum k-Cut: given a weighted graph G, find a set of edges with minimum total weight whose removal splits the graph into k components. We prove that this problem is NP-hard to approximate to within (2 - epsilon) factor of the optimum for every epsilon > 0, assuming SSEH.The ratios in our results are essentially tight since trivial algorithms give n-approximation to both MEB and MBB and 2-approximation algorithms are known for Minimum k-Cut [Saran and Vazirani, SIAM J. Comput., 1995].Our first two results are proved by combining a technique developed by Raghavendra, Steurer and Tulsiani [Raghavendra et al., CCC, 2012] to avoid locality of gadget reductions with a generalization of Bansal and Khotu27s long code test [Bansal and Khot, FOCS, 2009] whereas our last result is shown via an elementary reduction.
机译:小集展开假设(SSEH)是一个猜想,它粗略地指出,要区分具有一小组顶点的图(其展开几乎为零)和一个其中所有小顶点集的展开都几乎为一的图,这是NP-难的。在这项工作中,我们基于该假设证明了以下图问题的条件不近似结果:-最大边缘双斜度(MEB):给定二分图G,找到具有最大边数的G的完整二分图。我们证明,假设SSEH且NP!= BPP,则对于每个常数epsilon> 0,没有多项式时间算法给出MEB的n ^ {1-epsilon}-近似值。-Maximum Balanced Biclique(MBB):给定二部图G,找到具有最大顶点数的G的平衡完整二部图。与MEB相似,假设SSEH且NP!= BPP,我们证明对于每个epsilon> 0,MBB的n ^ {1-epsilon}比不近似。-最小k-Cut:给定加权图G,找到一组边最小总重量,其去除将图形分成k个分量。假设SSEH,我们证明这个问题很难NP近似于每个epsilon> 0的最佳(2-epsilon)因子之内。由于琐碎的算法对MEB和MBB和2近似算法可用于最小k剪切[Saran和Vazirani,SIAM J. Comput。,1995]。我们的前两个结果是通过结合Raghavendra,Steurer和Tulsiani开发的技术[Raghavendra等, CCC,2012年)通过对Bansal和Khot u27的长码测试进行一般化来避免小工具减少的局部性(Bansal和Khot,FOCS,2009年),而我们的最后结果是通过基本减少来显示的。

著录项

  • 作者

    Manurangsi Pasin;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号