...
首页> 外文期刊>LIPIcs : Leibniz International Proceedings in Informatics >Inapproximability of Maximum Edge Biclique, Maximum Balanced Biclique and Minimum k-Cut from the Small Set Expansion Hypothesis
【24h】

Inapproximability of Maximum Edge Biclique, Maximum Balanced Biclique and Minimum k-Cut from the Small Set Expansion Hypothesis

机译:最大边缘的不可估量,最大平衡的双光线和最小k切割从小集扩展假设

获取原文

摘要

The Small Set Expansion Hypothesis (SSEH) is a conjecture which roughly states that it is NP-hard to distinguish between a graph with a small set of vertices whose expansion is almost zero and one in which all small sets of vertices have expansion almost one. In this work, we prove conditional inapproximability results for the following graph problems based on this hypothesis: - Maximum Edge Biclique (MEB): given a bipartite graph G, find a complete bipartite subgraph of G with maximum number of edges. We show that, assuming SSEH and that NP != BPP, no polynomial time algorithm gives n^{1 - epsilon}-approximation for MEB for every constant epsilon > 0. - Maximum Balanced Biclique (MBB): given a bipartite graph G, find a balanced complete bipartite subgraph of G with maximum number of vertices. Similar to MEB, we prove n^{1 - epsilon} ratio inapproximability for MBB for every epsilon > 0, assuming SSEH and that NP != BPP. - Minimum k-Cut: given a weighted graph G, find a set of edges with minimum total weight whose removal splits the graph into k components. We prove that this problem is NP-hard to approximate to within (2 - epsilon) factor of the optimum for every epsilon > 0, assuming SSEH. The ratios in our results are essentially tight since trivial algorithms give n-approximation to both MEB and MBB and 2-approximation algorithms are known for Minimum k-Cut [Saran and Vazirani, SIAM J. Comput., 1995]. Our first two results are proved by combining a technique developed by Raghavendra, Steurer and Tulsiani [Raghavendra et al., CCC, 2012] to avoid locality of gadget reductions with a generalization of Bansal and Khot's long code test [Bansal and Khot, FOCS, 2009] whereas our last result is shown via an elementary reduction.
机译:小型扩展假设(SSEH)是一个猜想,大致指出它是NP - 很难区分具有一小组顶点的图形,其扩展几乎为零,并且所有小组顶点都有几乎膨胀的顶点。在这项工作中,我们证明了根据该假设的以下图表问题的条件不可识别结果: - 最大边缘Biclique(MEB):给定二分图G,找到具有最大边缘数的G的完整二兆子图。我们表明,假设SSEH和NP!= BPP,对于每个常数EPSILON> 0,没有多项式时间算法为N ^ {1 - epsilon}提供N ^ {1 - EPSILON} -MB的批量估计。 - 最大平衡BICLIQUE(MBB):给定二分图G,找到具有最大顶点数的G的平衡完整的二分三角形子图。与MEB类似,我们证明了每个epsilon> 0,假设SSEH和那个NP的MBB对MBB的N ^ {1-EPSILON}比率。= BPP。 - 最小k切割:给定加权图G,找到一组具有最小总重量的边缘,其删除将图形分成K组件。假设SSHE,我们证明了这个问题是NP - 难以近似于每个epsilon> 0的最佳的(2 - epsilon)因子。结果中的比率基本上是紧张的,因为琐碎的算法给出了MEB和MBB和MBB和2-近似算法的最小K-Cut [Saran和Vazirani,Siam J. Comput。,1995]。我们的前两种结果是通过组合由Raghavendra,Steurer和Tulsiani [Raghavendra等,CCC,2012]的技术来证明,以避免小工具延期的渠道,并透明于淘耳和凯特的长代码测试[Bansal和Khot,Focs,Focs, 2009]虽然我们的最后一个结果是通过基本的减少来显示的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号