首页> 外文OA文献 >Strong Converse for the Quantum Capacity of the Erasure Channel for Almost All Codes
【2h】

Strong Converse for the Quantum Capacity of the Erasure Channel for Almost All Codes

机译:几乎所有代码的擦除通道的量子容量的强逆

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A strong converse theorem for channel capacity establishes that the error probability in any communication scheme for a given channel necessarily tends to one if the rate of communication exceeds the channelu27s capacity. Establishing such a theorem for the quantum capacity of degradable channels has been an elusive task, with the strongest progress so far being a so-called "pretty strong converse." In this work, Morgan and Winter proved that the quantum error of any quantum communication scheme for a given degradable channel converges to a value larger than 1/sqrt(2) in the limit of many channel uses if the quantum rate of communication exceeds the channelu27s quantum capacity. The present paper establishes a theorem that is a counterpart to this "pretty strong converse." We prove that the large fraction of codes having a rate exceeding the erasure channelu27s quantum capacity have a quantum error tending to one in the limit of many channel uses. Thus, our work adds to the body of evidence that a fully strong converse theorem should hold for the quantum capacity of the erasure channel. As a side result, we prove that the classical capacity of the quantum erasure channel obeys the strong converse property.
机译:信道容量的强大逆定理确定,如果通信速率超过信道容量,则在给定信道的任何通信方案中,错误概率必然趋于一个。为可降解通道的量子容量建立这样的定理一直是一项艰巨的任务,迄今为止,最强劲的进展是所谓的“相当强大的逆转”。在这项工作中,Morgan和Winter证明,如果通信的量子速率超过信道,则给定可降解信道的任何量子通信方案的量子误差会在许多信道使用的限制内收敛到大于1 / sqrt(2)的值。量子容量。本文建立了一个定理,该定理与此“相当强的反面”相对应。我们证明,速率超过擦除通道量子容量的大部分代码,其量子误差在许多通道使用的限制内趋向于一。因此,我们的工作增加了证据,即对于擦除通道的量子容量,应持有一个完全强的逆定理。附带的结果,我们证明了量子擦除通道的经典容量服从强逆特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号