首页> 外文OA文献 >A Linear Kernel for Finding Square Roots of Almost Planar Graphs
【2h】

A Linear Kernel for Finding Square Roots of Almost Planar Graphs

机译:求几乎平面图平方根的线性核

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A graph H is a square root of a graph G if G can be obtained from H by the addition of edges between any two vertices in H that are of distance 2 of each other. The Square Root problem is that of deciding whether a given graph admits a square root. We consider this problem for planar graphs in the context of the "distance from triviality" framework. For an integer k, a planar+kv graph is a graph that can be made planar by the removal of at most k vertices. We prove that the generalization of Square Root, in which we are given two subsets of edges prescribed to be in or out of a square root, respectively, has a kernel of size O(k) for planar+kv graphs, when parameterized by k. Our result is based on a new edge reduction rule which, as we shall also show, has a wider applicability for the Square Root problem.
机译:如果可以通过在H的任意两个顶点之间相距2的边上相加边来从H获得G,则图H是图G的平方根。平方根问题是确定给定图是否允许平方根的问题。我们在“远离琐碎性”框架的背景下考虑平面图的此问题。对于整数k,平面+ kv图是可以通过移除最多k个顶点而变为平面的图。我们证明了平方根的推广,其中给定了分别在平方根之内或之外的两个边缘子集,当用k参数化时,平面+ kv图的核大小为O(k) 。我们的结果基于一个新的边缘减少规则,正如我们还将要展示的那样,该规则在平方根问题上具有更广泛的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号