首页> 外文OA文献 >A Generalized Method for Proving Polynomial Calculus Degree Lower Bounds
【2h】

A Generalized Method for Proving Polynomial Calculus Degree Lower Bounds

机译:一种证明多项式微积分下界的广义方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We study the problem of establishing lower bounds for polynomial calculus (PC) and polynomial calculus resolution (PCR) on proof degree, and hence by [Impagliazzo et al. u2799] also on proof size. [Alekhnovich and Razborov u2703] established that if the clause-variable incidence graph of a CNF formula F is a good enough expander, then proving that F is unsatisfiable requires high PC/PCR degree. We further develop the techniques in [AR03] to show that if one can "cluster" clauses and variables in a way that "respects the structure" of the formula in a certain sense, then it is sufficient that the incidence graph of this clustered version is an expander. As a corollary of this, we prove that the functional pigeonhole principle (FPHP) formulas require high PC/PCR degree when restricted to constant-degree expander graphs. This answers an open question in [Razborov u2702], and also implies that the standard CNF encoding of the FPHP formulas require exponential proof size in polynomial calculus resolution.
机译:我们研究在证明度上建立多项式微积分(PC)和多项式微积分分辨率(PCR)的下限的问题,因此[Impagliazzo等。 u2799]也在证明尺寸上。 [Alekhnovich and Razborov u2703]建立了一个假设,即如果CNF公式F的子句变量入射图是一个足够好的扩展器,那么证明F是不满足的就需要很高的PC / PCR程度。我们进一步开发了[AR03]中的技术,以表明如果可以以某种方式“尊重”公式的结构的方式“聚类”子句和变量,那么此聚类版本的发生图就足够了是扩展器。作为推论,我们证明了当限制在恒定度的展开图上时,功能鸽洞原理(FPHP)公式需要较高的PC / PCR度。这回答了[Razborov u2702]中的一个悬而未决的问题,并且还暗示FPHP公式的标准CNF编码需要多项式演算分辨率中的指数证明大小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号