Let K be a number field of degree n with ring of integers OK. By means of a criterion of Gilmer for polynomially dense subsets of the ring of integers of a number field, we show that, if h ∈ K[X] maps every element of OK of degree n to an algebraic integer, then h(X) is integral-valued over OK, that is, h(OK) ⊂ OK. A similar property holds if we consider the set of all algebraic integers of degree n and a polynomial f ∈ ℚ[X]: if f(α) is integral over ℤ for every algebraic integer α of degree n, then f(β) is integral over ℤ for every algebraic integer β of degree smaller than n. This second result is established by proving that the integral closure of the ring of polynomials in ℚ[X] which are integer-valued over the set of matrices Mn(ℤ) is equal to the ring of integral-valued polynomials over the set of algebraic integers of degree equal to n.
展开▼
机译:令K为n阶整数环的数字字段。通过吉尔梅准则,一个数域整数环的多项式密集子集,我们证明,如果h∈K[X]将度为OK的OK的每个元素映射到一个代数整数,则h(X)在OK上是整数值,即h(O K em>) em> O em> K em>。如果考虑度为 n em>的所有代数整数和多项式为 f em>∈∈[ℚ X em>]的集合,则具有相似的性质:if f em>(α em>)对于度为 n em>的每个代数整数α em>,然后为 f 对于每个小于 n em>的度数的每个代数整数β em>,em>(β em>)在over上都是积分的。通过证明that [ X em>]中多项式环的整数闭环来建立第二个结果,这些多项式环在矩阵 M em> n上是整数值 em>(ℤ)等于度为 n em>的一组代数整数上的整数值多项式的环。
展开▼