首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Integral-valued polynomials over sets of algebraic integers of bounded degree
【2h】

Integral-valued polynomials over sets of algebraic integers of bounded degree

机译:有界代数整数集上的积分值多项式

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Let K be a number field of degree n with ring of integers OK. By means of a criterion of Gilmer for polynomially dense subsets of the ring of integers of a number field, we show that, if h ∈ K[X] maps every element of OK of degree n to an algebraic integer, then h(X) is integral-valued over OK, that is, h(OK) ⊂ OK. A similar property holds if we consider the set of all algebraic integers of degree n and a polynomial f ∈ ℚ[X]: if f(α) is integral over ℤ for every algebraic integer α of degree n, then f(β) is integral over ℤ for every algebraic integer β of degree smaller than n. This second result is established by proving that the integral closure of the ring of polynomials in ℚ[X] which are integer-valued over the set of matrices Mn(ℤ) is equal to the ring of integral-valued polynomials over the set of algebraic integers of degree equal to n.
机译:令K为n阶整数环的数字字段。通过吉尔梅准则,一个数域整数环的多项式密集子集,我们证明,如果h∈K[X]将度为OK的OK的每个元素映射到一个代数整数,则h(X)在OK上是整数值,即h(O K ) em> O K 。如果考虑度为 n 的所有代数整数和多项式为 f ∈∈[ℚ X ]的集合,则具有相似的性质:if f α)对于度为 n 的每个代数整数α,然后为 f n 的度数的每个代数整数β,em>(β)在over上都是积分的。通过证明that [ X ]中多项式环的整数闭环来建立第二个结果,这些多项式环在矩阵 M n上是整数值(ℤ)等于度为 n 的一组代数整数上的整数值多项式的环。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号