首页> 外文OA文献 >All-Pairs Approximate Shortest Paths and Distance Oracle Preprocessing
【2h】

All-Pairs Approximate Shortest Paths and Distance Oracle Preprocessing

机译:全对近似最短路径和距离Oracle预处理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Given an undirected, unweighted graph G on n nodes, there is an O(n^2*poly log(n))-time algorithm that computes a data structure called distance oracle of size O(n^{5/3}*poly log(n)) answering approximate distance queries in constant time. For nodes at distance d the distance estimate is between d and 2d + 1.This new distance oracle improves upon the oracles of Patrascu and Roditty (FOCS 2010), Abraham and Gavoille (DISC 2011), and Agarwal and Brighten Godfrey (PODC 2013) in terms of preprocessing time, and upon the oracle of Baswana and Sen (SODA 2004) in terms of stretch. The running time analysis is tight (up to logarithmic factors) due to a recent lower bound of Abboud and Bodwin (STOC 2016).Techniques include dominating sets, sampling, balls, and spanners, and the main contribution lies in the way these techniques are combined. Perhaps the most interesting aspect from a technical point of view is the application of a spanner without incurring its constant additive stretch penalty.
机译:给定n个节点上的无向,无权图G,有一种O(n ^ 2 * poly log(n))-时间算法,该算法计算大小为O(n ^ {5/3} * poly log(n))在恒定时间内回答近似距离查询。对于距离为d的节点,距离估计在d和2d + 1之间。此新距离预言在Patrascu和Roditty(FOCS 2010),Abraham和Gavoille(DISC 2011),Agarwal和Brighten Godfrey(PODC 2013)的预言基础上进行了改进在预处理时间方面,以及在Baswana和Sen的预言(SODA,2004年)方面,都是基于拉伸。由于Abboud和Bodwin的近期下限(STOC 2016),运行时间分析很紧(高达对数因子),技术包括支配集合,采样,球和扳手,主要的贡献在于这些技术的方式结合。从技术角度来看,最有趣的方面也许是扳手的应用,而不会产生其恒定的附加拉伸损失。

著录项

  • 作者

    Sommer Christian;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号