首页> 外文OA文献 >Online Weighted Degree-Bounded Steiner Networks via Novel Online Mixed Packing/Covering
【2h】

Online Weighted Degree-Bounded Steiner Networks via Novel Online Mixed Packing/Covering

机译:在线加权度有界steiner网络通过新颖的在线混合包装/覆盖

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We design the first online algorithm with poly-logarithmic competitive ratio for the edge-weighted degree-bounded Steiner forest (EW-DB-SF) problem and its generalized variant. We obtain our result by demonstrating a new generic approach for solving mixed packing/covering integer programs in the online paradigm. In EW-DB-SF, we are given an edge-weighted graph with a degree bound for every vertex. Given a root vertex in advance, we receive a sequence of terminal vertices in an online manner. Upon the arrival of a terminal, we need to augment our solution subgraph to connect the new terminal to the root. The goal is to minimize the total weight of the solution while respecting the degree bounds on the vertices. In the offline setting, edge-weighted degree-bounded Steiner tree (EW-DB-ST) and its many variations have been extensively studied since early eighties. Unfortunately, the recent advancements in the online network design problems are inherently difficult to adapt for degree-bounded problems. In particular, it is not known whether the fractional solution obtained by standard primal-dual techniques for mixed packing/covering LPs can be rounded online. In contrast, in this paper we obtain our result by using structural properties of the optimal solution, and reducing the EW-DB-SF problem to an exponential-size mixed packing/covering integer program in which every variable appears only once in covering constraints. We then design a generic integral algorithm for solving this restricted family of IPs.As mentioned above, we demonstrate a new technique for solving mixed packing/covering integer programs. Define the covering frequency k of a program as the maximum number of covering constraints in which a variable can participate. Let m denote the number of packing constraints. We design an online deterministic integral algorithm with competitive ratio of O(k*log(m)) for the mixed packing/covering integer programs. We prove the tightness of our result by providing a matching lower bound for any randomized algorithm. We note that our solution solely depends on m and k. Indeed, there can be exponentially many variables. Furthermore, our algorithm directly provides an integral solution, even if the integrality gap of the program is unbounded. We believe this technique can be used as an interesting alternative for the standard primal-dual techniques in solving online problems.
机译:针对边缘加权度界斯坦纳森林问题(EW-DB-SF)及其广义变体,我们设计了第一个具有对数竞争比的在线算法。通过演示一种新的通用方法来解决在线范例中混合打包/覆盖整数程序的方法,我们获得了结果。在EW-DB-SF中,我们获得了一个边缘加权图,每个顶点都有一个度数边界。预先给定一个根顶点,我们以在线方式接收一系列终端顶点。终端到达后,我们需要扩展解决方案子图以将新终端连接到根。目的是在考虑顶点的度界的同时最小化解决方案的总权重。在离线环境中,自80年代初以来就对边缘加权度界Steiner树(EW-DB-ST)及其许多变体进行了广泛的研究。不幸的是,在线网络设计问题的最新发展固有地难以适应度界问题。尤其是,尚不知道可以通过标准的原始对偶技术获得的用于混合装填/覆盖LP的分馏溶液是否可以在线舍入。相反,在本文中,我们通过使用最佳解决方案的结构特性并将EW-DB-SF问题简化为指数大小的混合装箱/装箱整数程序(在该程序中,每个变量在覆盖约束中仅出现一次)来获得结果。然后,我们设计了一种通用的积分算法来解决这个受限IP系列。如上所述,我们展示了一种解决混合打包/覆盖整数程序的新技术。将程序的覆盖频率k定义为变量可以参与的覆盖限制的最大数目。令m表示包装约束的数量。针对混合打包/覆盖整数程序,设计了竞争比为O(k * log(m))的在线确定性积分算法。我们通过为任何随机算法提供匹配的下限来证明结果的紧密性。我们注意到,我们的解决方案仅取决于m和k。确实,可以有成倍的变量。此外,即使程序的完整性差距不受限制,我们的算法也可以直接提供积分解决方案。我们认为,该技术可以用作解决在线问题的标准原始对偶技术的有趣替代方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号