首页> 外文OA文献 >TWNFC - Transductive neural-fuzzy classifier with weighted data normalization and its application in medicine
【2h】

TWNFC - Transductive neural-fuzzy classifier with weighted data normalization and its application in medicine

机译:TWNFC - 带加权数据归一化的转导神经模糊分类器及其在医学中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper introduces a novel fuzzy model - transductive neural-fuzzy classifier with weighted data normalization (TWNFC), While inductive approaches are concerned with the development of a model to approximate data in the whole problem space (induction), and consecutively - using this model to calculate the output value(s) for a new input vector (deduction), in transductive systems a local model is developed for every new input vector, based on some closest data to this vector from the training data set. The weighted data normalization method (WDN) optimizes the data normalization ranges for the input variables of a system. A steepest descent algorithm is used for training the TWNFC model The TWNFC is illustrated on a case study: a real medical decision support problem of estimating the survival of haemodialysis patients. This personalized modeling can also be applied to other distance-based, prototype learning neural network or fuzzy inference models. © 2005 IEEE.
机译:本文介绍了一种新型的模糊模型-具有加权数据归一化的转导式神经模糊分类器(TWNFC),而归纳方法则涉及一种模型的开发,该模型可以在整个问题空间(归纳)中近似地进行数据逼近,并使用该模型为了计算新输入向量的输出值(推导),在转换系统中,基于一些与训练数据集中最接近该向量的数据,为每个新输入向量建立局部模型。加权数据规范化方法(WDN)优化了系统输入变量的数据规范化范围。使用最速下降算法来训练TWNFC模型。案例研究说明了TWNFC:估算血液透析患者存活率的实际医学决策支持问题。这种个性化建模还可以应用于其他基于距离的原型学习神经网络或模糊推理模型。 ©2005 IEEE。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号