首页> 外文OA文献 >Evolving computational intelligence: methods, systems, applications
【2h】

Evolving computational intelligence: methods, systems, applications

机译:不断发展的计算智能:方法,系统,应用程序

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The talk presents an overview of current methods of computational intelligence (CI) called evolving CI (eCI) and how they can be used in to create adaptive, computational intelligence (CI) systems across areas of applications. Evolving systems evolve their structure and functionality in a self-organised, adaptive, incremental way to capture patterns form input data. The methods presented include: evolving connections systems (ECOS) and evolving neuro-fuzzy systems in particular; evolving spiking neural networks (eSNN); evolutionary and neurogenetic systems; quantum inspired evolutionary computation; rule extraction from ECOS and eSNN. The methods above are suitable for incremental adaptive, on-line learning from data and data mining. They are applied on spatio and spectro temporal data modeling and pattern recognition problems, including: moving objectrecognition, gesture- and sign language recognition; bioinformatics; ecological and environmental modeling, such as establishment and spread of invasive species; cybersecurity; brain data modeling and brain-computer interfaces.eSNN have? proved superior for spatio and spectro-temporal data analysis, modeling and pattern recognition (http://ncs.ethz.ch/projects/evospike/). Future directions for eCI are discussed including hardware-software system development and neuromorphic engineering. Materials related to the lecture, such as papers, data and software systems can be found on the Knowledge Engineering and Discovery Research Institute KEDRI web site (www.kedri.info) of the Auckland University of Technology and the Rio de Janeiro Brazilian Chapter of the IEEE CIS.
机译:演讲概述了当前被称为演进CI(eCI)的计算智能(CI)方法,以及如何将其用于跨应用领域创建自适应计算智能(CI)系统。不断发展的系统以自组织,自适应,增量的方式发展其结构和功能,以捕获输入数据中的模式。提出的方法包括:演化连接系统(ECOS),尤其是演化神经模糊系统;不断发展的尖峰神经网络(eSNN);进化和神经遗传系统;量子启发式进化计算;从ECOS和eSNN中提取规则。上面的方法适用于从数据和数据挖掘中进行增量自适应在线学习。它们应用于时空和光谱时态数据建模和模式识别问题,包括:移动物体识别,手势和手语识别;生物信息学生态和环境建模,例如入侵物种的建立和传播;网络安全;脑数据建模和脑计算机接口。eSNN有吗?事实证明,它在时空和光谱时数据分析,建模和模式识别方面表现出色(http://ncs.ethz.ch/projects/evospike/)。讨论了eCI的未来方向,包括软硬件系统开发和神经形态工程。与演讲相关的材料,例如论文,数据和软件系统,可以在奥克兰理工大学的知识工程和发现研究院KEDRI网站(www.kedri.info)和该大学的里约热内卢巴西分会找到。 IEEE CIS。

著录项

  • 作者

    Kasabov N;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号