首页> 外文OA文献 >Deep learning for predicting refractive error from retinal fundus images
【2h】

Deep learning for predicting refractive error from retinal fundus images

机译:深度学习预测视网膜眼底图像的屈光不正

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Refractive error, one of the leading cause of visual impairment, can becorrected by simple interventions like prescribing eyeglasses. We trained adeep learning algorithm to predict refractive error from the fundus photographsfrom participants in the UK Biobank cohort, which were 45 degree field of viewimages and the AREDS clinical trial, which contained 30 degree field of viewimages. Our model use the "attention" method to identify features that arecorrelated with refractive error. Mean absolute error (MAE) of the algorithm'sprediction compared to the refractive error obtained in the AREDS and UKBiobank. The resulting algorithm had a MAE of 0.56 diopters (95% CI: 0.55-0.56)for estimating spherical equivalent on the UK Biobank dataset and 0.91 diopters(95% CI: 0.89-0.92) for the AREDS dataset. The baseline expected MAE (obtainedby simply predicting the mean of this population) was 1.81 diopters (95% CI:1.79-1.84) for UK Biobank and 1.63 (95% CI: 1.60-1.67) for AREDS. Attentionmaps suggested that the foveal region was one of the most important areas usedby the algorithm to make this prediction, though other regions also contributeto the prediction. The ability to estimate refractive error with high accuracyfrom retinal fundus photos has not been previously known and demonstrates thatdeep learning can be applied to make novel predictions from medical images.Given that several groups have recently shown that it is feasible to obtainretinal fundus photos using mobile phones and inexpensive attachments, thiswork may be particularly relevant in regions of the world where autorefractorsmay not be readily available.
机译:屈光不正是视力障碍的主要原因之一,可以通过处方眼镜等简单的干预措施来纠正。我们训练了深度学习算法,以根据英国Biobank队列参与者的眼底照片预测屈光不正,这是45度视野,而AREDS临床试验则包含30度视野。我们的模型使用“注意”方法来识别与屈光不正相关的特征。与AREDS和UKBiobank中获得的屈光误差相比,该算法的平均平均误差(MAE)。所得算法的MAE为0.56屈光度(95%CI:0.55-0.56),用于估计UK Biobank数据集上的球当量,而MAE为0.91屈光度(95%CI:0.89-0.92)。 UK Biobank的基线预期MAE(仅通过简单地预测该人群的平均值即可获得)为1.81屈光度(95%CI:1.79-1.84),而AREDS的基线预期MAE为1.63(95%CI:1.60-1.67)。注意图表明,中央凹区域是算法用来进行此预测的最重要区域之一,尽管其他区域也有助于预测。从视网膜眼底照片高精度估计屈光不正的能力是未知的,并且证明了深度学习可以用于从医学图像做出新颖的预测。鉴于最近有几组研究表明使用手机获取视网膜眼底照片是可行的廉价的附件,这项工作在世界上可能无法轻易获得自动验光仪的地区尤其重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号