首页> 外文OA文献 >A multigrid solver to the Helmholtz equation with a point source based on travel time and amplitude
【2h】

A multigrid solver to the Helmholtz equation with a point source based on travel time and amplitude

机译:Helmholtz方程的多重网格求解器,基于点源   旅行时间和幅度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Helmholtz equation arises when modeling wave propagation in the frequencydomain. The equation is discretized as an indefinite linear system, which isdifficult to solve at high wave numbers. In many applications, the solution ofthe Helmholtz equation is required for a point source. In this case, it ispossible to reformulate the equation as two separate equations: one for thetravel time of the wave and one for its amplitude. The travel time is obtainedby a solution of the factored eikonal equation, and the amplitude is obtainedby solving a complex-valued advection-diffusion-reaction (ADR) equation. Thereformulated equation is equivalent to the original Helmholtz equation, and thedifferences between the numerical solutions of these equations arise only fromdiscretization errors. We develop an efficient multigrid solver for obtainingthe amplitude given the travel time, which can be efficiently computed. Thisapproach is advantageous because the amplitude is typically smooth in thiscase, and hence, more suitable for multigrid solvers than the standardHelmholtz discretization. We demonstrate that our second order ADRdiscretization is more accurate than the standard second order discretizationat high wave numbers, as long as there are no reflections or caustics.Moreover, we show that using our approach, the problem can be solved moreefficiently than using the common shifted Laplacian multigrid approach.
机译:当对频域中的波传播进行建模时,会产生亥姆霍兹方程。该方程被离散为一个不确定的线性系统,难以求解高波数。在许多应用中,点源需要Helmholtz方程的解。在这种情况下,有可能将公式重新构造为两个单独的公式:一个用于波动时间,另一个用于振幅。通过分解因数方程式的解获得传播时间,并通过解复值对流扩散反应(ADR)方程获得振幅。所公式化的方程等效于原始的亥姆霍兹方程,并且这些方程的数值解之间的差异仅由离散误差引起。我们开发了一种有效的多网格求解器,用于获得给定的行进时间振幅,该振幅可以有效地计算出来。该方法是有利的,因为在这种情况下幅度通常是平滑的,因此比标准的亥姆霍兹离散化更适合于多网格求解器。我们证明了在高波数下,只要没有反射或焦散,我们的二阶ADR离散化比标准的二阶离散化更为准确;此外,我们证明了使用我们的方法比使用普通移位可以更有效地解决问题。拉普拉斯多重网格方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号