首页> 外文OA文献 >Training Convolutional Neural Networks with Limited Training Data for Ear Recognition in the Wild
【2h】

Training Convolutional Neural Networks with Limited Training Data for Ear Recognition in the Wild

机译:训练有限训练数据的卷积神经网络   野外的耳朵识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Identity recognition from ear images is an active field of research withinthe biometric community. The ability to capture ear images from a distance andin a covert manner makes ear recognition technology an appealing choice forsurveillance and security applications as well as related application domains.In contrast to other biometric modalities, where large datasets captured inuncontrolled settings are readily available, datasets of ear images are stilllimited in size and mostly of laboratory-like quality. As a consequence, earrecognition technology has not benefited yet from advances in deep learning andconvolutional neural networks (CNNs) and is still lacking behind othermodalities that experienced significant performance gains owing to deeprecognition technology. In this paper we address this problem and aim atbuilding a CNNbased ear recognition model. We explore different strategiestowards model training with limited amounts of training data and show that byselecting an appropriate model architecture, using aggressive data augmentationand selective learning on existing (pre-trained) models, we are able to learnan effective CNN-based model using a little more than 1300 training images. Theresult of our work is the first CNN-based approach to ear recognition that isalso made publicly available to the research community. With our model we areable to improve on the rank one recognition rate of the previousstate-of-the-art by more than 25% on a challenging dataset of ear imagescaptured from the web (a.k.a. in the wild).
机译:耳朵图像的身份识别是生物识别界研究的一个活跃领域。能够以远距离和秘密的方式捕获耳朵图像的能力使耳朵识别技术成为监视和安全应用以及相关应用领域的诱人选择。与其他生物特征识别方法相反,在其他生物特征识别方法中,在不受控制的环境中捕获的大型数据集很容易获得。耳朵图像的大小仍然有限,并且大多具有实验室般的质量。结果,耳识别技术尚未从深度学习和卷积神经网络(CNN)的进步中受益,并且仍然缺乏其他因深度识别技术而获得显着性能提升的模式。在本文中,我们解决了这个问题,旨在建立基于CNN的耳朵识别模型。我们探索了使用有限数量的训练数据进行模型训练的不同策略,并表明通过选择适当的模型体系结构,使用积极的数据扩充和对现有模型(预训练)的选择性学习,我们可以使用更多的方法来学习基于CNN的有效模型超过1300张训练图像。我们的工作成果是第一个基于CNN的人耳识别方法,该方法也已公开提供给研究社区。使用我们的模型,我们可以在从网络上捕获的富有挑战性的耳朵图像数据集(在野外也是如此)中将先前的最新技术的识别率提高25%以上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号