首页> 外文OA文献 >Fast and guaranteed blind multichannel deconvolution under a bilinear system model
【2h】

Fast and guaranteed blind multichannel deconvolution under a bilinear system model

机译:在双线性下快速且有保证的盲多通道反褶积   系统模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider the multichannel blind deconvolution problem where we observe theoutput of multiple channels that are all excited with the same unknown input.From these observations, we wish to estimate the impulse responses of each ofthe channels. We show that this problem is well-posed if the channels follow abilinear model where the ensemble of channel responses is modeled as lying in alow-dimensional subspace but with each channel modulated by an independentgain. Under this model, we show how the channel estimates can be found byminimizing a quadratic functional over a non-convex set. We analyze two methods for solving this non-convex program, and provideperformance guarantees for each. The first is a method of alternatingeigenvectors that breaks the program down into a series of eigenvalue problems.The second is a truncated power iteration, which can roughly be interpreted asa method for finding the largest eigenvector of a symmetric matrix with theadditional constraint that it adheres to our bilinear model. As with mostnon-convex optimization algorithms, the performance of both of these algorithmsis highly dependent on having a good starting point. We show how such astarting point can be constructed from the channel measurements. Our performance guarantees are non-asymptotic, and provide a sufficientcondition on the number of samples observed per channel in order to guaranteechannel estimates of a certain accuracy. Our analysis uses a model with a"generic" subspace that is drawn at random, and we show the performance boundshold with high probability. Mathematically, the key estimates are derived byquantifying how well the eigenvectors of certain random matrices approximatethe eigenvectors of their mean. We also present a series of numerical results demonstrating that theempirical performance is consistent with the presented theory.
机译:我们考虑了多通道盲解卷积问题,在该问题中,我们观察了多个由相同未知输入激发的通道的输出。从这些观察中,我们希望估算每个通道的脉冲响应。我们表明,如果信道遵循双线性模型,则该问题是恰当的,在该模型中,信道响应的集合被建模为位于低维子空间中,但每个信道都由独立增益调制。在此模型下,我们展示了如何通过最小化非凸集上的二次函数来找到信道估计。我们分析了两种解决该非凸程序的方法,并为每种方法提供了性能保证。第一种是交替特征向量的方法,它将程序分解为一系列特征值问题;第二种是截断幂次迭代,可以粗略地解释为找到对称矩阵具有其附加约束的最大特征向量的方法我们的双线性模型。与大多数非凸优化算法一样,这两种算法的性能高度依赖于一个好的起点。我们展示了如何从信道测量中构建这样的起点。我们的性能保证是非渐近的,并为每个通道上观察到的样本数量提供了充分的条件,以保证对通道的估计具有一定的准确性。我们的分析使用带有随机绘制的“通用”子空间的模型,并且我们很有可能显示性能界限。在数学上,关键量化是通过量化某些随机矩阵的特征向量接近其均值特征向量而得出的。我们还提供了一系列数值结果,证明了经验性能与所提出的理论是一致的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号