首页> 外文期刊>Image Processing, IEEE Transactions on >Robust Multichannel Blind Deconvolution via Fast Alternating Minimization
【24h】

Robust Multichannel Blind Deconvolution via Fast Alternating Minimization

机译:通过快速交替最小化实现强大的多通道盲解卷积

获取原文
获取原文并翻译 | 示例

摘要

Blind deconvolution, which comprises simultaneous blur and image estimations, is a strongly ill-posed problem. It is by now well known that if multiple images of the same scene are acquired, this multichannel (MC) blind deconvolution problem is better posed and allows blur estimation directly from the degraded images. We improve the MC idea by adding robustness to noise and stability in the case of large blurs or if the blur size is vastly overestimated. We formulate blind deconvolution as an $ell_{1}$ -regularized optimization problem and seek a solution by alternately optimizing with respect to the image and with respect to blurs. Each optimization step is converted to a constrained problem by variable splitting and then is addressed with an augmented Lagrangian method, which permits simple and fast implementation in the Fourier domain. The rapid convergence of the proposed method is illustrated on synthetically blurred data. Applicability is also demonstrated on the deconvolution of real photos taken by a digital camera.
机译:包括同时模糊和图像估计的盲反卷积是一个严重的不适定问题。到现在为止众所周知,如果获取同一场景的多个图像,则该多通道(MC)盲解卷积问题会更好地提出,并且可以直接从降级的图像进行模糊估计。在大模糊情况下或如果模糊大小被严重高估时,我们通过在噪声和稳定性方面增加鲁棒性来改进MC思想。我们将盲反卷积公式化为$ ell_ {1} $正规化优化问题,并通过针对图像和模糊进行交替优化来寻求解决方案。每个优化步骤都通过变量拆分转换为约束问题,然后使用增强的拉格朗日方法进行处理,从而可以在傅立叶域中实现简单快速的实现。在合成模糊数据上说明了该方法的快速收敛性。数码相机拍摄的真实照片的反卷积也证明了其适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号