首页> 外文OA文献 >Heat, temperature and Clausius inequality in a model for active brownian particles
【2h】

Heat, temperature and Clausius inequality in a model for active brownian particles

机译:热活,布朗的模型中的热,温度和克劳修斯不等式   粒子

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Methods of stochastic thermodynamics and hydrodynamics are applied to the arecently introduced model of active particles. The model consists of anoverdamped particle subject to Gaussian coloured noise. Inspired by stochasticthermodynamics, we derive from the system's Fokker-Planck equation the averageexchanges of heat and work with the active bath and the associated entropyproduction. We show that a Clausius inequality holds, with the local(non-uniform) temperature of the active bath replacing the uniform temperatureusually encountered in equilibrium systems. Furthermore, by restricting thedynamical space to the first velocity moments of the local distributionfunction we derive a hydrodynamic description where local pressure, kinetictemperature and internal heat fluxes appear and are consistent with theprevious thermodynamic analysis. The procedure also shows under whichconditions one obtains the unified coloured noise approximation (UCNA): such anapproximation neglects the fast relaxation to the active bath and thereforeyields detailed balance and zero entropy production. In the last part, by usingmultiple time-scale analysis, we provide a constructive method (alternative toUCNA) to determine the solution of the Kramers equation and go beyond thedetailed balance condition determining negative entropy production.
机译:随机热力学和流体动力学方法被应用到最近引入的活性颗粒模型中。该模型由经受高斯色噪声的过阻尼粒子组成。受随机热力学的启发,我们从系统的Fokker-Planck方程中得出热量和活动浴的平均交换以及相关的熵产生。我们证明了克劳修斯不等式成立,活动浴池的局部(非均匀)温度代替了平衡系统中通常遇到的均匀温度。此外,通过将动力学空间限制在局部分布函数的第一速度矩上,我们得到了一个流体动力学描述,其中出现了局部压力,动力学温度和内部热通量,并且与先前的热力学分析一致。该过程还表明,在哪种条件下可以获得统一的有色噪声近似值(UCNA):这种近似忽略了活性浴的快速松弛,因此产生了详细的平衡和零熵产生。在最后一部分中,通过使用多个时间尺度分析,我们提供了一种构造方法(替代UCNA)来确定Kramers方程的解,并且超出了确定负熵产生的详细平衡条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号