首页> 外文OA文献 >Semi-Supervised Sparse Representation Based Classification for Face Recognition with Insufficient Labeled Samples
【2h】

Semi-Supervised Sparse Representation Based Classification for Face Recognition with Insufficient Labeled Samples

机译:基于半监督稀疏表示的人脸分类   标记样本不足的识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper addresses the problem of face recognition when there is only few,or even only a single, labeled examples of the face that we wish to recognize.Moreover, these examples are typically corrupted by nuisance variables, bothlinear (i.e., additive nuisance variables such as bad lighting, wearing ofglasses) and non-linear (i.e., non-additive pixel-wise nuisance variables suchas expression changes). The small number of labeled examples means that it ishard to remove these nuisance variables between the training and testing facesto obtain good recognition performance. To address the problem we propose amethod called Semi-Supervised Sparse Representation based Classification(S$^3$RC). This is based on recent work on sparsity where faces are representedin terms of two dictionaries: a gallery dictionary consisting of one or moreexamples of each person, and a variation dictionary representing linearnuisance variables (e.g., different lighting conditions, different glasses).The main idea is that (i) we use the variation dictionary to characterize thelinear nuisance variables via the sparsity framework, then (ii) prototype faceimages are estimated as a gallery dictionary via a Gaussian Mixture Model(GMM), with mixed labeled and unlabeled samples in a semi-supervised manner, todeal with the non-linear nuisance variations between labeled and unlabeledsamples. We have done experiments with insufficient labeled samples, even whenthere is only a single labeled sample per person. Our results on the AR,Multi-PIE, CAS-PEAL, and LFW databases demonstrate that the proposed method isable to deliver significantly improved performance over existing methods.
机译:当我们希望识别的人脸只有很少甚至只有一个标记的示例时,本文就解决了人脸识别的问题。此外,这些示例通常会被线性的扰动变量破坏(例如,附加的扰动变量,例如例如不良的照明,戴眼镜)和非线性的(例如,非可累加的像素级讨厌变量,例如表情变化)。带标记的示例数量很少,这意味着很难去除训练和测试面孔之间的这些令人讨厌的变量,以获得良好的识别性能。为了解决这个问题,我们提出了一种基于半监督稀疏表示的分类方法(S $ ^ 3 $ RC)。这是基于最近的关于稀疏性的工作,其中用两个字典来表示面孔:一个由每个人的一个或多个示例组成的画廊字典,以及一个代表线性烦扰变量(例如,不同的照明条件,不同的眼镜)的变化字典。是(i)我们使用变异字典通过稀疏框架表征线性扰动变量,然后(ii)通过高斯混合模型(GMM)将原型人脸图像估计为图库字典,并在半样本中混合了标记和未标记的样本有监督的方式,应对标记和未标记样品之间的非线性扰动变化。即使每个人只有一个标记的样本,我们也进行了标记样本不足的实验。我们在AR,Multi-PIE,CAS-PEAL和LFW数据库上的结果表明,与现有方法相比,所提出的方法能够显着提高性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号