首页> 外文OA文献 >Framework for evaluation of sound event detection in web videos
【2h】

Framework for evaluation of sound event detection in web videos

机译:评估网络视频中声音事件检测的框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The largest source of sound events is web videos. Most videos lack soundevent labels at segment level, however, a significant number of them do respondto text queries, from a match found to their metadata by the search engine. Inthis paper we explore the extent to which a search query could be used as thetrue label for the presence of sound events in the videos. For this, wedeveloped a framework for large-scale sound event recognition on web videos.The framework crawls videos using search queries corresponding to 78 soundevent labels drawn from three datasets. The datasets are used to train threeclassifiers, which were then run on 3.7 million video segments. We evaluatedperformance using the search query as the true label and compare it (on asubset) with human labeling. Both types exhibited close performance, to within10%, and similar performance trends as the number of evaluated segmentsincreased. Hence, our experiments show potential for using search query as apreliminary true label for sound events in web videos.
机译:声音事件的最大来源是网络视频。大多数视频在片段级别都没有声音事件标签,但是,从搜索引擎发现的匹配到元数据的匹配中,有很多视频确实对文本查询做出响应。在本文中,我们探讨了搜索查询在多大程度上可以用作视频中声音事件的真实标签。为此,我们开发了一个用于在网络视频上进行大规模声音事件识别的框架,该框架使用与来自三个数据集的78个声音事件标签相对应的搜索查询来抓取视频。数据集用于训练三个分类器,然后在370万个视频段上运行。我们使用搜索查询作为真实标签来评估性能,并将其(在子集上)与人工标签进行比较。两种类型都表现出接近的性能,达到10%以内,并且随着评估的细分市场数量的增加,性能趋势相似。因此,我们的实验显示了使用搜索查询作为网络视频中声音事件的初步真实标签的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号