首页> 外文OA文献 >Massive Machine Type Communication with Data Aggregation and Resource Scheduling
【2h】

Massive Machine Type Communication with Data Aggregation and Resource Scheduling

机译:具有数据聚合和资源的大规模机器类型通信   调度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To enable massive machine type communication (mMTC), data aggregation is apromising approach to reduce the congestion caused by a massive number ofmachine type devices (MTDs). In this work, we consider a two-phasecellular-based mMTC network where MTDs transmit to aggregators (i.e.,aggregation phase) and the aggregated data is then relayed to base stations(i.e., relaying phase). Due to the limited resources, the aggregators not onlyaggregate data, but also schedule resources among MTDs. We consider twoscheduling schemes: random resource scheduling (RRS) and channel-aware resourcescheduling (CRS). By leveraging the stochastic geometry, we present a tractableanalytical framework to investigate the signal-to-interference ratio (SIR) foreach phase, thereby computing the MTD success probability, the average numberof successful MTDs and probability of successful channel utilization, which arethe key metrics characterizing the overall mMTC performance. Our numericalresults show that, although the CRS outperforms the RRS in terms of SIR at theaggregation phase, the simpler RRS has almost the same performance as the CRSfor most cases with regards to the overall mMTC performance. Furthermore, theprovision of more resources at the aggregation phase is not always beneficialto the mMTC performance.
机译:为了实现大规模机器类型通信(mMTC),数据聚合是一种有希望的方法,可以减少由大量机器类型设备(MTD)引起的拥塞。在这项工作中,我们考虑了一个基于两阶段蜂窝的mMTC网络,其中MTD传输到聚合器(即聚合阶段),然后将聚合的数据中继到基站(即中继阶段)。由于资源有限,聚合器不仅聚合数据,还调度MTD之间的资源。我们考虑两种调度方案:随机资源调度(RRS)和通道感知资源调度(CRS)。通过利用随机几何结构,我们提供了一个易于分析的框架来研究每个阶段的信噪比(SIR),从而计算出MTD成功概率,成功MTD的平均数量和成功利用信道的概率,这是表征的关键指标整体mMTC表现。我们的数值结果表明,尽管在聚合阶段CRS在SIR方面优于RRS,但就整体mMTC性能而言,较简单的RRS在大多数情况下的性能几乎与CRS相同。此外,在聚合阶段提供更多的资源并不总是有益于mMTC性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号