首页> 外文OA文献 >A Fast Algorithm for Convolutional Structured Low-Rank Matrix Recovery
【2h】

A Fast Algorithm for Convolutional Structured Low-Rank Matrix Recovery

机译:一种卷积结构低秩矩阵恢复的快速算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fourier domain structured low-rank matrix priors are emerging as powerfulalternatives to traditional image recovery methods such as total variation andwavelet regularization. These priors specify that a convolutional structuredmatrix, i.e., Toeplitz, Hankel, or their multi-level generalizations, builtfrom Fourier data of the image should be low-rank. The main challenge inapplying these schemes to large-scale problems is the computational complexityand memory demand resulting from lifting the image data to a large scalematrix. We introduce a fast and memory efficient approach called the GenericIterative Reweighted Annihilation Filter (GIRAF) algorithm that exploits theconvolutional structure of the lifted matrix to work in the original un-lifteddomain, thus considerably reducing the complexity. Our experiments on therecovery of images from undersampled Fourier measurements show that theresulting algorithm is considerably faster than previously proposed algorithms,and can accommodate much larger problem sizes than previously studied.
机译:傅立叶域结构化的低秩矩阵先验正成为传统图像恢复方法(如总变异和小波正则化)的强大替代方案。这些先验规定从图像的傅立叶数据构建的卷积结构化矩阵即Toeplitz,Hankel或它们的多级概括应为低秩。将这些方案应用于大规模问题的主要挑战是将图像数据提升到大规模矩阵所导致的计算复杂性和存储需求。我们引入一种称为GenericIterative Reweighted Annihilation Filter(GIRAF)算法的快速且内存高效的方法,该算法利用提升矩阵的卷积结构在原始非提升域中工作,从而大大降低了复杂度。我们对欠采样傅立叶测量结果进行图像恢复的实验表明,结果算法比以前提出的算法要快得多,并且可以容纳比以前研究的问题大得多的问题。

著录项

  • 作者

    Ongie, Greg; Jacob, Mathews;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号