首页> 外文期刊>Computational Imaging, IEEE Transactions on >A Fast Algorithm for Convolutional Structured Low-Rank Matrix Recovery
【24h】

A Fast Algorithm for Convolutional Structured Low-Rank Matrix Recovery

机译:卷积结构低秩矩阵恢复的快速算法

获取原文
获取原文并翻译 | 示例

摘要

Fourier-domain structured low-rank matrix priors are emerging as powerful alternatives to traditional image recovery methods such as total variation and wavelet regularization. These priors specify that a convolutional structured matrix, i.e., Toeplitz, Hankel, or their multilevel generalizations, built from Fourier data of the image should be low-rank. The main challenge in applying these schemes to large-scale problems is the computational complexity and memory demand resulting from lifting the image data to a large-scale matrix. We introduce a fast and memory-efficient approach called the generic iterative reweighted annihilation filter algorithm that exploits the convolutional structure of the lifted matrix to work in the original unlifted domain, thus considerably reducing the complexity. Our experiments on the recovery of images from undersampled Fourier measurements show that the resulting algorithm is considerably faster than previously proposed algorithms and can accommodate much larger problem sizes than previously studied.
机译:傅立叶域结构化的低秩矩阵先验正逐渐成为传统图像恢复方法(如总变异和小波正则化)的强大替代品。这些先验规定从图像的傅立叶数据建立的卷积结构矩阵,即Toeplitz,Hankel或其多级概括,应该是低等级的。将这些方案应用于大规模问题的主要挑战是将图像数据提升到大规模矩阵所导致的计算复杂性和存储需求。我们引入一种称为通用迭代重加权an灭过滤器算法的快速且内存高效的方法,该算法利用提升矩阵的卷积结构在原始未提升域中工作,从而大大降低了复杂度。我们从欠采样傅立叶测量中恢复图像的实验表明,所得算法比以前提出的算法要快得多,并且可以容纳比以前研究的问题大得多的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号