首页> 外文OA文献 >Learning a Dilated Residual Network for SAR Image Despeckling
【2h】

Learning a Dilated Residual Network for SAR Image Despeckling

机译:学习扩散残余网络用于saR图像去斑

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this letter, to break the limit of the traditional linear models for SARimage despeckling, we propose a novel deep learning approach by learning anon-linear end-to-end mapping between the noisy and clean SAR images with adilated residual network (SAR-DRN). SAR-DRN is based on dilated convolutions,which can both enlarge the receptive field and maintain the filter size andlayer depth with a lightweight structure. In addition, skip connections areadded to the despeckling model to reduce the vanishing gradient problem.Compared with the traditional despeckling methods, the proposed method showssuperior performance over the state-of-the-art methods on both quantitative andvisual assessments, especially for strong speckle noise.
机译:在这封信中,为了突破传统线性模型用于SAR图像去斑点的限制,我们提出了一种新颖的深度学习方法,该方法通过学习带有残差网络(SAR-DRN)的噪声和干净SAR图像之间的非线性线性端到端映射)。 SAR-DRN基于膨胀卷积,既可以扩大接收场,又可以以轻巧的结构保持滤波器的尺寸和层深。此外,在去斑点模型中添加了跳过连接以减少消失梯度问题。与传统的去斑点方法相比,该方法在定量和视觉评估方面表现出优于最新方法的性能,尤其是对于强斑点噪声而言。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号