首页> 外文OA文献 >Learning Quadrotor Dynamics Using Neural Network for Flight Control
【2h】

Learning Quadrotor Dynamics Using Neural Network for Flight Control

机译:利用神经网络学习四旋翼动力学飞行控制系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Traditional learning approaches proposed for controlling quadrotors orhelicopters have focused on improving performance for specific trajectories byiteratively improving upon a nominal controller, for example learning fromdemonstrations, iterative learning, and reinforcement learning. In theseschemes, however, it is not clear how the information gathered from thetraining trajectories can be used to synthesize controllers for more generaltrajectories. Recently, the efficacy of deep learning in inferring helicopterdynamics has been shown. Motivated by the generalization capability of deeplearning, this paper investigates whether a neural network based dynamics modelcan be employed to synthesize control for trajectories different than thoseused for training. To test this, we learn a quadrotor dynamics model using onlytranslational and only rotational training trajectories, each of which can becontrolled independently, and then use it to simultaneously control the yaw andposition of a quadrotor, which is non-trivial because of nonlinear couplingsbetween the two motions. We validate our approach in experiments on a quadrotortestbed.
机译:提出的用于控制四旋翼飞机或直升机的传统学习方法集中在通过迭代地改善名义控制器上来改善特定轨迹的性能,例如从演示中学习,迭代学习和强化学习。然而,在这些方案中,尚不清楚如何将从训练轨迹中收集的信息用于合成用于更一般轨迹的控制器。最近,已经证明了深度学习在推断直升机动力学方面的功效。受深度学习泛化能力的激励,本文研究了是否可以使用基于神经网络的动力学模型来合成与用于训练的轨迹不同的轨迹的控制。为了测试这一点,我们学习了仅使用平移和仅旋转训练轨迹的四旋翼动力学模型,它们各自可以独立控制,然后使用它同时控制四旋翼的偏航和位置,由于两者之间存在非线性耦合,因此这是不平凡的动作。我们在四旋翼试验台上的实验中验证了我们的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号