We show that one-dimensional circle is the only case for closed smooth metricmeasure spaces with nonnegative Bakry-\'{E}mery Ricci curvature whose spectrumof the weighted Laplacian has an optimal positive upper bound. This resultextends the work of Hang-Wang in the manifold case (Int. Math. Res. Not. 18(2007), Art. ID rnm064, 9pp).
展开▼
机译:我们表明,一维圆是具有非负Bakry-\'{E} mery Ricci曲率的闭式光滑度量空间的唯一情况,其加权Laplacian谱具有最佳正上限。该结果扩展了Hang-Wang在流形情况下的工作(Int。Math。Res。Not。18(2007),Art ID ID rnm064,9pp)。
展开▼