首页> 外文OA文献 >Effective optimization using sample persistence: A case study on quantum annealers and various Monte Carlo optimization methods
【2h】

Effective optimization using sample persistence: A case study on quantum annealers and various Monte Carlo optimization methods

机译:使用样本持久性进行有效优化:量子力学的案例研究   退火炉和各种蒙特卡罗优化方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present and apply a general-purpose, multi-start algorithm for improvingthe performance of low-energy samplers used for solving optimization problems.The algorithm iteratively fixes the value of a large portion of the variablesto values that have a high probability of being optimal. The resulting problemsare smaller and less connected, and samplers tend to give better low-energysamples for these problems. The algorithm is trivially parallelizable, sinceeach start in the multi-start algorithm is independent, and could be applied toany heuristic solver that can be run multiple times to give a sample. Wepresent results for several classes of hard problems solved using simulatedannealing, path-integral quantum Monte Carlo, parallel tempering withisoenergetic cluster moves, and a quantum annealer, and show that the successmetrics as well as the scaling are improved substantially. When combined withthis algorithm, the quantum annealer's scaling was substantially improved fornative Chimera graph problems. In addition, with this algorithm the scaling ofthe time to solution of the quantum annealer is comparable to the Hamze--deFreitas--Selby algorithm on the weak-strong cluster problems introduced byBoixo et al. Parallel tempering with isoenergetic cluster moves was able toconsistently solve 3D spin glass problems with 8000 variables when combinedwith our method, whereas without our method it could not solve any.
机译:我们提出并应用一种通用的多启动算法来提高用于解决优化问题的低能耗采样器的性能。该算法将大部分变量的值迭代地固定为极有可能达到最优的值。由此产生的问题更小,连接更少,并且采样器往往会针对这些问题提供更好的低能耗样本。该算法几乎可以并行化,因为多次启动算法中的每个启动都是独立的,并且可以应用于可以多次运行以提供样本的任何启发式求解器。我们提供了使用模拟退火,路径积分量子蒙特卡洛,具有等能簇运动的平行回火和量子退火器解决的几类难题的结果,并表明,成功度量和缩放比例得到了显着改善。当与该算法结合使用时,量子退火器的比例得到了实质性的改善,从而改善了奇美拉图问题。此外,利用该算法,量子退火炉求解时间的缩放比例与Boixo等人提出的关于弱强簇问题的Hamze-deFreitas-Selby算法相当。当与我们的方法结合使用时,具有等能量团簇移动的平行回火能够一致地解决具有8000个变量的3D自旋玻璃问题,而如果没有我们的方法,它就无法解决任何问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号