The metric outside a compact body deformed by a quadrupolar tidal field isuniversal up to its Love numbers, constants which encode the tidal response'sdependence on the body's internal structure. For a non-rotating body, thedeformed external geometry is characterized by the familiar gravitational Lovenumbers $K_2^{\text{el}}$ and $K_2^{\text{mag}}$. For a slowly rotating body,these must be supplemented by rotational-tidal Love numbers, which measure theresponse to couplings between the body's spin and the external tidal field. Byintegrating the interior field equations, I find that the response of abarotropic perfect fluid to spin-coupled tidal perturbations is described bytwo rotational-tidal Love numbers, which I calculate explicitly for polytropes.Two other rotational-tidal Love numbers identified in prior work are found tohave a fixed, universal value for all barotropes. Equipped with the completeinterior solution, I calculate the amplitude of the time-varying internalcurrents induced by the gravitomagnetic part of the tidal field. For a typicalneutron star in an equal-mass binary system, the size of the equatorialvelocity perturbation is on the order of kilometers per second.
展开▼
机译:由四极潮汐场变形的紧凑型人体外部的度量标准,直到其Love数都是通用的,该常数编码潮汐反应对人体内部结构的依赖性。对于不旋转的物体,变形的外部几何形状以熟悉的重力Lovenumbers $ K_2 ^ {\ text {el}} $和$ K_2 ^ {\ text {mag}} $为特征。对于缓慢旋转的物体,必须在其上附加潮汐洛夫数,以测量对人体自旋与外部潮汐场之间耦合的响应。通过积分内部场方程,我发现通过两个旋转潮汐洛夫数来描述正变完美流体对自旋耦合潮汐扰动的响应,我明确地为多向性计算了两个旋转潮汐洛夫数,并且找到了先前工作中确定的另外两个旋转潮汐洛夫数。对所有正压传感器都具有固定的通用值配备了完整的内部解,我计算了由潮场的重磁部分感应的时变内部电流的幅度。对于等质量双星系统中的典型中子星,赤道速度扰动的大小约为每秒千米。
展开▼