首页> 外文OA文献 >Intent Recognition in Smart Living Through Deep Recurrent Neural Networks
【2h】

Intent Recognition in Smart Living Through Deep Recurrent Neural Networks

机译:通过深度递归神经网络实现智能生活中的意图识别   网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Electroencephalography (EEG) signal based intent recognition has recentlyattracted much attention in both academia and industries, due to helping theelderly or motor-disabled people controlling smart devices to communicate withouter world. However, the utilization of EEG signals is challenged by lowaccuracy, arduous and time- consuming feature extraction. This paper proposes a7-layer deep learning model to classify raw EEG signals with the aim ofrecognizing subjects' intents, to avoid the time consumed in pre-processing andfeature extraction. The hyper-parameters are selected by an Orthogonal Arrayexperiment method for efficiency. Our model is applied to an open EEG datasetprovided by PhysioNet and achieves the accuracy of 0.9553 on the intentrecognition. The applicability of our proposed model is further demonstrated bytwo use cases of smart living (assisted living with robotics and homeautomation).
机译:最近,基于脑电图(EEG)信号的意图识别吸引了学术界和工业界的广泛关注,这是因为它可以帮助控制智能设备的老年人或行动不便的人自由交流。但是,EEG信号的使用受到精度低,费力且费时的特征提取的挑战。本文提出了一种7层深度学习模型,对原始EEG信号进行分类,目的是识别受试者的意图,从而避免在预处理和特征提取上花费时间。通过正交阵列实验方法选择超参数以提高效率。我们的模型应用于PhysioNet提供的开放式EEG数据集,在意图识别上达到0.9553的准确性。我们的模型的适用性通过智能生活的两个用例(机器人和家庭自动化辅助生活)得到进一步证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号