首页> 外文OA文献 >Deeply-Learned Part-Aligned Representations for Person Re-Identification
【2h】

Deeply-Learned Part-Aligned Representations for Person Re-Identification

机译:深入学习人员重新识别的部分对齐表示

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we address the problem of person re-identification, whichrefers to associating the persons captured from different cameras. We propose asimple yet effective human part-aligned representation for handling the bodypart misalignment problem. Our approach decomposes the human body into regions(parts) which are discriminative for person matching, accordingly computes therepresentations over the regions, and aggregates the similarities computedbetween the corresponding regions of a pair of probe and gallery images as theoverall matching score. Our formulation, inspired by attention models, is adeep neural network modeling the three steps together, which is learnt throughminimizing the triplet loss function without requiring body part labelinginformation. Unlike most existing deep learning algorithms that learn a globalor spatial partition-based local representation, our approach performs humanbody partition, and thus is more robust to pose changes and various humanspatial distributions in the person bounding box. Our approach showsstate-of-the-art results over standard datasets, Market-$1501$, CUHK$03$,CUHK$01$ and VIPeR.
机译:在本文中,我们解决了人员重新识别的问题,这是指将从不同摄像机捕获的人员进行关联。我们提出了一种简单而有效的人体部位对齐表示方法来处理人体部位未对齐问题。我们的方法将人体分解为对人的匹配有区别的区域(部分),相应地计算该区域上的表示,并将在一对探测图像和图库图像的对应区域之间计算出的相似度汇总为总体匹配分数。我们的模型受注意力模型的启发,是将三个步骤结合在一起的深层神经网络,这是通过最小化三重态损失函数而学到的,而无需身体部位标记信息。与大多数现有的学习基于全局或​​空间分区的局部表示的深度学习算法不同,我们的方法执行人体分区,因此在人员边界框内进行更改和各种人类空间分布更健壮。我们的方法显示了标准数据集,Market- $ 1501 $,CUHK $ 03 $,CUHK $ 01 $和VIPeR的最新结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号