首页> 外文OA文献 >ConfidentCare: A Clinical Decision Support System for Personalized Breast Cancer Screening
【2h】

ConfidentCare: A Clinical Decision Support System for Personalized Breast Cancer Screening

机译:ConfidentCare:个性化的临床决策支持系统   乳腺癌筛查

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Breast cancer screening policies attempt to achieve timely diagnosis by theregular screening of apparently healthy women. Various clinical decisions areneeded to manage the screening process; those include: selecting the screeningtests for a woman to take, interpreting the test outcomes, and deciding whetheror not a woman should be referred to a diagnostic test. Such decisions arecurrently guided by clinical practice guidelines (CPGs), which represent aone-size-fits-all approach that are designed to work well on average for apopulation, without guaranteeing that it will work well uniformly over thatpopulation. Since the risks and benefits of screening are functions of eachpatients features, personalized screening policies that are tailored to thefeatures of individuals are needed in order to ensure that the right tests arerecommended to the right woman. In order to address this issue, we presentConfidentCare: a computer-aided clinical decision support system that learns apersonalized screening policy from the electronic health record (EHR) data.ConfidentCare operates by recognizing clusters of similar patients, andlearning the best screening policy to adopt for each cluster. A cluster ofpatients is a set of patients with similar features (e.g. age, breast density,family history, etc.), and the screening policy is a set of guidelines on whatactions to recommend for a woman given her features and screening test scores.ConfidentCare algorithm ensures that the policy adopted for every cluster ofpatients satisfies a predefined accuracy requirement with a high level ofconfidence. We show that our algorithm outperforms the current CPGs in terms ofcost-efficiency and false positive rates.
机译:乳腺癌筛查政策试图通过对显然健康的女性进行定期筛查来实现及时诊断。需要各种临床决策来管理筛选过程;这些措施包括:为女性选择筛查测试,解释检测结果并确定是否应将女性转诊至诊断检测。目前,此类决策由临床实践指南(CPG)指导,CPG代表了一种“万事俱备”的方法,该方法旨在平均程度地满足人口需求,但不能保证其在该人口群体中均能正常工作。由于筛查的风险和益处取决于每个患者的功能,因此需要针对个人特点量身定制的个性化筛查策略,以确保将正确的检测推荐给合适的女性。为了解决这个问题,我们提出了ConfidentCare:一种计算机辅助临床决策支持系统,可从电子健康记录(EHR)数据中学习个性化筛查策略.ConfidentCare通过识别相似患者的群体并学习最佳的筛查策略进行操作。每个集群。一群患者是一组具有相似特征(例如年龄,乳房密度,家族史等)的患者,而筛查政策是根据女性特征和筛查测试分数向女性建议采取何种行动的一系列指导方针。该算法可确保为每个患者群采用的策略以高度的置信度满足预定义的准确性要求。我们证明,在成本效率和误报率方面,我们的算法优于目前的CPG。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号