首页> 外文OA文献 >Tight Performance Bounds for Compressed Sensing With Group Sparsity
【2h】

Tight Performance Bounds for Compressed Sensing With Group Sparsity

机译:压缩感知与集团稀疏性的紧密性能界限

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Compressed sensing refers to the recovery of a high-dimensional but sparsevector using a small number of linear measurements. Minimizing the$\ell_1$-norm is among the more popular approaches for compressed sensing. Arecent paper by Cai and Zhang has provided the "best possible" bounds for$\ell_1$-norm minimization to achieve robust sparse recovery (a formalstatement of compressed sensing). In some applications, "group sparsity" ismore natural than conventional sparsity. In this paper we present sufficientconditions for $\ell_1$-norm minimization to achieve robust group sparserecovery. When specialized to conventional sparsity, these conditions reduce tothe known "best possible" bounds proved earlier by Cai and Zhang. This isachieved by stating and proving a group robust null space property, which is anew result even for conventional sparsity. We also derive bounds for the$\ell_p$-norm of the residual error between the true vector and itsapproximation, for all $p \in [1,2]$. These bounds are new even forconventional sparsity and of course also for group sparsity, because previouslyerror bounds were available only for the $\ell_2$-norm.
机译:压缩感测是指使用少量线性测量来恢复高维但稀疏向量。最小化$ \ ell_1 $ -norm是更流行的压缩感测方法之一。 Cai和Zhang的Arecent论文为$ \ ell_1 $范数最小化提供了“最佳可能”界限,以实现鲁棒的稀疏恢复(压缩感知的形式化陈述)。在某些应用中,“群体稀疏性”比常规稀疏性更自然。在本文中,我们为$ \ ell_1 $-范数最小化提供了充分的条件,以实现健壮的团体稀疏恢复。当专门用于常规稀疏性时,这些条件会减少到Cai和Zhang先前证明的“最佳可能”范围。这是通过陈述和证明一组鲁棒的零空间属性来实现的,即使对于常规的稀疏性,这也是一个新结果。对于[1,2] $中的所有$ p,我们还得出真实矢量与其近似值之间残差的$ \ ell_p $-范数的界。这些界限即使对于常规稀疏性也是新的,对于团体稀疏性当然也是新的,因为以前的错误界限仅适用于$ \ ell_2 $范数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号