首页> 外文OA文献 >A multi-modes Monte Carlo finite element method for elliptic partial differential equations with random coefficients
【2h】

A multi-modes Monte Carlo finite element method for elliptic partial differential equations with random coefficients

机译:椭圆偏微分方程的多模蒙特卡罗有限元方法   具有随机系数的微分方程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper develops and analyzes an efficient numerical method for solvingelliptic partial differential equations, where the diffusion coefficients arerandom perturbations of deterministic diffusion coefficients. The method isbased upon a multi-modes representation of the solution as a power series ofthe perturbation parameter, and the Monte Carlo technique for sampling theprobability space. One key feature of the proposed method is that the governingequations for all the expanded mode functions share the same deterministicdiffusion coefficients, thus an efficient direct solver by repeated use of the$LU$ decomposition matrices can be employed for solving the finite elementdiscretized linear systems. It is shown that the computational complexity ofthe whole algorithm is comparable to that of solving a few deterministicelliptic partial differential equations using the $LU$ director solver. Errorestimates are derived for the method, and numerical experiments are provided totest the efficiency of the algorithm and validate the theoretical results.
机译:本文开发并分析了一种求解椭圆型偏微分方程的有效数值方法,该方法的扩散系数是确定性扩散系数的随机扰动。该方法基于解决方案的多模表示(作为扰动参数的幂级数)和蒙特卡罗技术对概率空间进行采样。该方法的一个关键特征是所有扩展模式函数的控制方程共享相同的确定扩散系数,因此可以通过重复使用$ LU $分解矩阵来使用有效的直接求解器来求解有限元离散线性系统。结果表明,整个算法的计算复杂度与使用$ LU $导向求解器求解几个确定性椭圆型偏微分方程的计算复杂度相当。推导了该方法的误差估计,并提供了数值实验以测试算法的效率并验证理论结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号