This paper develops and analyzes an efficient numerical method for solvingelliptic partial differential equations, where the diffusion coefficients arerandom perturbations of deterministic diffusion coefficients. The method isbased upon a multi-modes representation of the solution as a power series ofthe perturbation parameter, and the Monte Carlo technique for sampling theprobability space. One key feature of the proposed method is that the governingequations for all the expanded mode functions share the same deterministicdiffusion coefficients, thus an efficient direct solver by repeated use of the$LU$ decomposition matrices can be employed for solving the finite elementdiscretized linear systems. It is shown that the computational complexity ofthe whole algorithm is comparable to that of solving a few deterministicelliptic partial differential equations using the $LU$ director solver. Errorestimates are derived for the method, and numerical experiments are provided totest the efficiency of the algorithm and validate the theoretical results.
展开▼
机译:本文开发并分析了一种求解椭圆型偏微分方程的有效数值方法,该方法的扩散系数是确定性扩散系数的随机扰动。该方法基于解决方案的多模表示(作为扰动参数的幂级数)和蒙特卡罗技术对概率空间进行采样。该方法的一个关键特征是所有扩展模式函数的控制方程共享相同的确定扩散系数,因此可以通过重复使用$ LU $分解矩阵来使用有效的直接求解器来求解有限元离散线性系统。结果表明,整个算法的计算复杂度与使用$ LU $导向求解器求解几个确定性椭圆型偏微分方程的计算复杂度相当。推导了该方法的误差估计,并提供了数值实验以测试算法的效率并验证理论结果。
展开▼