首页> 外文OA文献 >Effects of cross-diffusion on Turing patterns in a reaction-diffusion Schnakenberg model
【2h】

Effects of cross-diffusion on Turing patterns in a reaction-diffusion Schnakenberg model

机译:交叉扩散对反应扩散中图灵模式的影响   schnakenberg模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper the Turing pattern formation mechanism of a two componentreaction-diffusion system modeling the Schnakenberg chemical reaction coupledto linear cross-diffusion terms is studied. The linear cross-diffusion termsfavors the destabilization of the constant steady state and the mechanism ofpattern formation with respect to the standard linear diffusion case, as shownin Madzvamuse et al. (J. Math. Biol. 2014). Since the subcritical Turingbifurcations of reaction-diffusion systems lead to spontaneous onset of robust,finite-amplitude localized patterns, here a detailed investigation of theTuring pattern forming region is performed to show how the diffusioncoefficients for both species (the activator and the inhibitor) influence theoccurrence of supercritical or subcritical bifurcations. The weakly nonlinear(WNL) multiple scales analysis is employed to derive the equations for theamplitude of the Turing patterns and to distinguish the supercritical and thesubcritical pattern region, both in 1D and 2D domains. Numerical simulationsare employed to confirm the WNL theoretical predictions through which aclassification of the patterns (squares, rhombi, rectangle and hexagons) isobtained. In particular, due to the hysteretic nature of the subcriticalbifurcation, we observe the phenomenon of pattern transition from rolls tohexagons, in agreement with the bifurcation diagram.
机译:本文研究了耦合线性交叉扩散项的Schnakenberg化学反应的两组分反应扩散系统的Turing模式形成机理。线性交叉扩散项有利于恒定稳态的不稳定和相对于标准线性扩散情况的图案形成机制,如Madzvamuse等人所述。 (J.数学。生物学.2014)。由于反应扩散系统的亚临界图灵分支会自发出现鲁棒的,有限振幅的局部模式,因此在此对图灵模式形成区域进行了详细研究,以显示两种物质(活化剂和抑制剂)的扩散系数如何影响其发生。超临界或亚临界分叉。采用弱非线性(WNL)多尺度分析来推导图灵模式振幅的方程,并区分一维和二维域中的超临界和亚临界模式区域。数值模拟被用来确认WNL的理论预测,通过该预测可以获得模式(正方形,菱形,矩形和六边形)的分类。特别地,由于亚临界分叉的滞后性质,我们观察到了与分叉图一致的从辊到六边形的图案过渡现象。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号