首页> 外文OA文献 >From Jack to Double Jack Polynomials via the Supersymmetric Bridge
【2h】

From Jack to Double Jack Polynomials via the Supersymmetric Bridge

机译:从杰克到双杰克多项式通过超对称桥

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Calogero-Sutherland model occurs in a large number of physical contexts,either directly or via its eigenfunctions, the Jack polynomials. Thesupersymmetric counterpart of this model, although much less ubiquitous, has anequally rich structure. In particular, its eigenfunctions, the Jacksuperpolynomials, appear to share the very same remarkable combinatorial andstructural properties as their non-supersymmetric version. Thesesuper-functions are parametrized by superpartitions with fixed bosonic andfermionic degrees. Now, a truly amazing feature pops out when the fermionicdegree is sufficiently large: the Jack superpolynomials stabilize andfactorize. Their stability is with respect to their expansion in terms of anelementary basis where, in the stable sector, the expansion coefficients becomeindependent of the fermionic degree. Their factorization is seen when thefermionic variables are stripped off in a suitable way which results in aproduct of two ordinary Jack polynomials (somewhat modified by plethystictransformations), dubbed the double Jack polynomials. Here, in addition tospelling out these results, which were first obtained in the context ofMacdonal superpolynomials, we provide a heuristic derivation of the Jacksuperpolynomial case by performing simple manipulations on the supersymmetriceigen-operators, rendering them independent of the number of particles and ofthe fermionic degree. In addition, we work out the expression of theHamiltonian which characterizes the double Jacks. This Hamiltonian, whichdefines a new integrable system, involves not only the expectedCalogero-Sutherland pieces but also combinations of the generators of anunderlying affine ${\widehat{\mathfrak {sl}}_2}$ algebra.
机译:Calogero-Sutherland模型直接或通过其特征函数Jack多项式出现在大量物理环境中。该模型的超对称对应物尽管不那么普遍,但具有相当丰富的结构。特别是,其本征函数Jacksuper多项式似乎具有与其非超对称形式相同的显着组合和结构特性。这些超功能是由具有固定的玻和铁离子度的超分区参数化的。现在,当费米子数足够大时,就会出现一个真正令人惊奇的功能:杰克超多项式稳定并分解。它们的稳定性取决于它们在无定理基础上的膨胀,其中在稳定的区域中,膨胀系数变得与铁离子度无关。当以合适的方式去除铁离子变量时,可以看到它们的因式分解,这将导致两个普通的Jack多项式(有些被体积变数修饰)被乘以Double Jack多项式。在这里,除了说明这些首先在麦克唐纳超多项式的上下文中获得的结果外,我们还通过对超对称本征算子进行简单操作,使它们不受粒子数量和费米离子度的影响,提供了杰克超多项式情况的启发式推导。 。另外,我们算出了具有双重杰克特征的汉密尔顿式的表达。定义新的可积系统的哈密顿量不仅涉及预期的Calogero-Sutherland块,而且涉及基础仿射$ {\ widehat {\ mathfrak {sl}} _ 2} $代数的生成器的组合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号