首页> 外文OA文献 >Refining genetically inferred relationships using treelet covariance smoothing
【2h】

Refining genetically inferred relationships using treelet covariance smoothing

机译:使用小树协方差来细化遗传推断的关系   平滑

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recent technological advances coupled with large sample sets have uncoveredmany factors underlying the genetic basis of traits and the predisposition tocomplex disease, but much is left to discover. A common thread to most geneticinvestigations is familial relationships. Close relatives can be identifiedfrom family records, and more distant relatives can be inferred from largepanels of genetic markers. Unfortunately these empirical estimates can benoisy, especially regarding distant relatives. We propose a new method fordenoising genetically - inferred relationship matrices by exploiting theunderlying structure due to hierarchical groupings of correlated individuals.The approach, which we call Treelet Covariance Smoothing, employs a multiscaledecomposition of covariance matrices to improve estimates of pairwiserelationships. On both simulated and real data, we show that smoothing leads tobetter estimates of the relatedness amongst distantly related individuals. Weillustrate our method with a large genome-wide association study and estimatethe "heritability" of body mass index quite accurately. Traditionallyheritability, defined as the fraction of the total trait variance attributableto additive genetic effects, is estimated from samples of closely relatedindividuals using random effects models. We show that by using smoothedrelationship matrices we can estimate heritability using population-basedsamples. Finally, while our methods have been developed for refining geneticrelationship matrices and improving estimates of heritability, they have muchbroader potential application in statistics. Most notably, forerror-in-variables random effects models and settings that requireregularization of matrices with block or hierarchical structure.
机译:近来的技术进步以及大量的样本集,已经揭示了许多性状的遗传基础和复杂疾病易感性的潜在因素,但仍有很多发现。大多数基因研究的共同点是家族关系。可以从家庭记录中确定近亲,并且可以从大量的遗传标记中推断出远亲。不幸的是,这些经验估计可能很嘈杂,尤其是对于远亲。我们提出了一种新的方法,该方法通过利用相关个体的分层分组所产生的基础结构来对遗传推断的关系矩阵进行去噪。该方法称为Treelet协方差平滑,它使用协方差矩阵的多尺度分解来改善成对关系的估计。在模拟数据和真实数据上,我们都表明平滑处理可以更好地估计远距离相关个体之间的相关性。我们通过一个大型的全基因组关联研究说明了我们的方法,并相当准确地估计了体重指数的“遗传力”。传统上,可遗传性定义为可归因于加性遗传效应的总性状方差的一部分,是使用随机效应模型从密切相关的个体样本中估算的。我们表明,通过使用平滑关系矩阵,我们可以使用基于人群的样本来估计遗传力。最后,尽管我们已经开发出了完善遗传关系矩阵和改进遗传力估计的方法,但它们在统计学中的应用潜力更大。最值得注意的是,forvarier-in-variables随机效应模型和设置需要对具有块或层次结构的矩阵进行正则化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号