首页> 外文OA文献 >Self-consistent solution of Kohn-Sham equations for infinitely extended systems with inhomogeneous electron gas
【2h】

Self-consistent solution of Kohn-Sham equations for infinitely extended systems with inhomogeneous electron gas

机译:无限扩展的Kohn-sham方程的自洽解   具有不均匀电子气的系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The density functional approach in the Kohn-Sham approximation is widely usedto study properties of many-electron systems. Due to the nonlinearity of theKohn-Sham equations, the general self-consistence searching method involvesiterations with alternate solving of the Poisson and Schr\"{o}dinger equations.One of problems of such an approach is that the charge distribution renewed bymeans of the Schr\"{o}dinger equation solution does not conform to boundaryconditions of Poisson equation for Coulomb potential. The resulting instabilityor even divergence of iterations manifests itself most appreciably in the caseof infinitely extended systems. The published attempts to deal with thisproblem are reduced in fact to abandoning the original iterative method andreplacing it with some approximate calculation scheme, which is usuallysemi-empirical and does not permit to evaluate the extent of deviation from theexact solution. In this work, we realize the iterative scheme of solving theKohn-Sham equations for extended systems with inhomogeneous electron gas, whichis based on eliminating the long-range character of Coulomb interaction as thecause of tight coupling between charge distribution and boundary conditions.The suggested algorithm is employed to calculate energy spectrum,self-consistent potential, and electrostatic capacitance of the semi-infinitedegenerate electron gas bounded by infinitely high barrier, as well as the workfunction and surface energy of simple metals in the jellium model. Thedifference between self-consistent Hartree solutions and those taking intoaccount the exchange-correlation interaction is analyzed. The case study of themetal-semiconductor tunnel contact shows this method being applied to aninfinitely extended system where the steady-state current can flow.
机译:Kohn-Sham逼近中的密度泛函方法被广泛用于研究多电子系统的性质。由于Kohn-Sham方程的非线性,一般的自洽搜索方法涉及迭代求解Poisson和Schr“ dinger方程的迭代方法。这种方法的问题之一是,电荷的分布会通过以下方法来更新:薛定“方程解不符合库仑势的泊松方程的边界条件。在无限扩展的系统中,最不明显的结果是迭代的不稳定性或什至发散。实际上,已发表的解决此问题的尝试被简化为放弃原始的迭代方法,并用一些近似的计算方案代替了它,这通常是半经验的,并且不允许评估与精确解的偏离程度。在这项工作中,我们实现了求解具有不均匀电子气的扩展系统的Kohn-Sham方程的迭代方案,该方案基于消除由于电荷分布与边界条件之间紧密耦合而导致的库仑相互作用的远距离特性。用能量模型,自洽势,无限高势垒限制的半无限简并电子气的静电电容,以及在Jelium模型中计算简单金属的功函数和表面能。分析了自洽Hartree解与考虑交换相关相互作用的解之间的差异。对金属-半导体隧道接触的案例研究表明,该方法已应用于稳态电流可以流动的无限扩展系统。

著录项

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号