首页> 外文OA文献 >Fence methods for mixed model selection
【2h】

Fence methods for mixed model selection

机译:用于混合模型选择的栅栏方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many model search strategies involve trading off model fit with modelcomplexity in a penalized goodness of fit measure. Asymptotic properties forthese types of procedures in settings like linear regression and ARMA timeseries have been studied, but these do not naturally extend to nonstandardsituations such as mixed effects models, where simple definition of the samplesize is not meaningful. This paper introduces a new class of strategies, knownas fence methods, for mixed model selection, which includes linear andgeneralized linear mixed models. The idea involves a procedure to isolate asubgroup of what are known as correct models (of which the optimal model is amember). This is accomplished by constructing a statistical fence, or barrier,to carefully eliminate incorrect models. Once the fence is constructed, theoptimal model is selected from among those within the fence according to acriterion which can be made flexible. In addition, we propose two variations ofthe fence. The first is a stepwise procedure to handle situations of manypredictors; the second is an adaptive approach for choosing a tuning constant.We give sufficient conditions for consistency of fence and its variations, adesirable property for a good model selection procedure. The methods areillustrated through simulation studies and real data analysis.
机译:许多模型搜索策略涉及以拟合优度的代价来权衡模型拟合与模型复杂性。已经研究了诸如线性回归和ARMA时间序列之类的设置中的程序类型的渐近性质,但是这些并不自然地扩展到诸如混合效果模型之类的非标准情况,在这种情况下,简单地定义样本大小没有意义。本文介绍了用于混合模型选择的一类新策略,称为围栏方法,其中包括线性和广义线性混合模型。这个想法涉及一个程序,该程序用于隔离一个称为正确模型(其中是最佳模型的成员)的子组。这是通过构造统计围栏或障碍来仔细消除不正确的模型来完成的。一旦构建了围栏,就可以根据准则从围栏内的模型中选择最佳模型,该最佳模型可以变得灵活。此外,我们提出了围栏的两种变体。首先是处理许多预测变量情况的分步过程;第二种是选择调整常数的自适应方法。我们为围栏及其变化的一致性提供了充分的条件,并为良好的模型选择程序提供了理想的属性。通过仿真研究和实际数据分析说明了这些方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号