首页> 外文OA文献 >Deploying Wireless Networks with Beeps
【2h】

Deploying Wireless Networks with Beeps

机译:使用蜂鸣声部署无线网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present the \emph{discrete beeping} communication model, which assumesnodes have minimal knowledge about their environment and severely limitedcommunication capabilities. Specifically, nodes have no information regardingthe local or global structure of the network, don't have access to synchronizedclocks and are woken up by an adversary. Moreover, instead on communicatingthrough messages they rely solely on carrier sensing to exchange information.We study the problem of \emph{interval coloring}, a variant of vertex coloringspecially suited for the studied beeping model. Given a set of resources, thegoal of interval coloring is to assign every node a large contiguous fractionof the resources, such that neighboring nodes share no resources. To highlightthe importance of the discreteness of the model, we contrast it against acontinuous variant described in [17]. We present an O(1$ time algorithm thatterminates with probability 1 and assigns an interval of size$\Omega(T/\Delta)$ that repeats every $T$ time units to every node of thenetwork. This improves an $O(\log n)$ time algorithm with the same guaranteespresented in \cite{infocom09}, and accentuates the unrealistic assumptions ofthe continuous model. Under the more realistic discrete model, we present a LasVegas algorithm that solves $\Omega(T/\Delta)$-interval coloring in $O(\log n)$time with high probability and describe how to adapt the algorithm for dynamicnetworks where nodes may join or leave. For constant degree graphs we prove alower bound of $\Omega(\log n)$ on the time required to solve interval coloringfor this model against randomized algorithms. This lower bound implies that ouralgorithm is asymptotically optimal for constant degree graphs.
机译:我们提出了\ emph {discrete beeping}通信模型,该模型假定节点对其环境的了解最少,并且通信能力受到严重限制。具体来说,节点没有有关网络本地或全局结构的信息,无法访问同步时钟,并且会被对手唤醒。而且,它们不是通过消息进行通信,而是完全依靠载波侦听来交换信息。我们研究了\ emph {interval coloring}的问题,这是一种特别适合于所研究的蜂鸣模型的顶点着色的变体。给定一组资源,间隔着色的目标是为每个节点分配大量连续的资源,以使相邻节点不共享资源。为了强调模型离散性的重要性,我们将其与[17]中描述的连续变量进行对比。我们提出了一个O(1 $时间算法,该算法以概率1终止,并分配了一个大小为$ \ Omega(T / \ Delta)$的间隔,该间隔对网络的每个节点重复每个$ T $时间单位。这可以提高$ O(\ log n)$时间算法具有\ cite {infocom09}中表示的相同保证,并强调了连续模型的不现实假设,在更现实的离散模型下,我们提出了可解决$ \ Omega(T / \ Delta)$的LasVegas算法在$ O(\ log n)$时间中进行间隔着色,并描述了如何针对节点可以加入或离开的动态网络调整算法。对于恒定度图,我们证明了$ \ Omega(\ log n)$的下界该模型的下限表示我们的算法对于恒定度图是渐近最优的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号