首页> 外文OA文献 >The DEEP2 Galaxy Redshift Survey: Redshift Identification of Single-Line Emission Galaxies
【2h】

The DEEP2 Galaxy Redshift Survey: Redshift Identification of Single-Line Emission Galaxies

机译:DEEp2银河红移调查:单线红移识别   发射星系

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present two methods for determining spectroscopic redshifts of galaxies inthe DEEP2 survey which display only one identifiable feature, an emission line,in the observed spectrum ("single-line galaxies"). First, we assume each singleline is one of the four brightest lines accessible to DEEP2: Halpha, [OIII]5007, Hbeta, or [OII] 3727. Then, we supplement spectral information with BRIphotometry. The first method, parameter space proximity (PSP), calculates thedistance of a single-line galaxy to galaxies of known redshift in (B-R), (R-I),R, observed wavelength parameter space. The second method is an artificialneural network (ANN). Prior information, such as allowable line widths andratios, rules out one or more of the four lines for some galaxies in bothmethods. Based on analyses of evaluation sets, both methods are nearly perfectat identifying blended [OII] doublets. Of the lines identified as Halpha in thePSP and ANN methods, 91.4% and 94.2% respectively are accurate. Although themethods are not this accurate at discriminating between [OIII] and Hbeta, theycan identify a single line as one of the two, and the ANN method in particularunambiguously identifies many [OIII] lines. From a sample of 640 single-linespectra, the methods determine the identities of 401 (62.7%) and 472 (73.8%)single lines, respectively, at accuracies similar to those found in theevaluation sets.
机译:我们在DEEP2调查中介绍了两种确定星系光谱红移的方法,这些方法在观察到的光谱中仅显示一个可识别的特征,即发射线(“单线星系”)。首先,我们假设每个单行是DEEP2可访问的四个最亮的行之一:Halpha,[OIII] 5007,Hbeta或[OII]3727。然后,我们使用BRI光度法补充光谱信息。第一种方法是参数空间接近度(PSP),它计算单线星系到(B-R),(R-1),R观测波长参数空间中已知红移的星系的距离。第二种方法是人工神经网络(ANN)。先验信息(例如允许的线宽和比率)排除了两种方法中某些星系的四条线中的一条或多条。基于评估集的分析,这两种方法在识别混合[OII]双重峰方面均接近完美。在PSP和ANN方法中被标识为Halpha的行中,分别为91.4%和94.2%是准确的。尽管该方法不能准确区分[OIII]和Hbeta,但它们可以将一条直线识别为两者之一,尤其是ANN方法可以明确地识别许多[OIII]直线。从640个单线谱的样本中,这些方法分别以与评估集中相似的精度确定401(62.7%)和472(73.8%)个单线的身份。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号