In this paper we discuss existence and uniqueness for a one-dimensional timeinhomogeneous stochastic differential equation directed by an$\mathbb{F}$-semimartingale $M$ and a finite cubic variation process $\xi$which has the structure $Q+R$, where $Q$ is a finite quadratic variationprocess and $R$ is strongly predictable in some technical sense: that conditionimplies, in particular, that $R$ is weak Dirichlet, and it is fulfilled, forinstance, when $R$ is independent of $M$. The method is based on atransformation which reduces the diffusion coefficient multiplying $\xi$ to 1.We use generalized It\^{o} and It\^{o}--Wentzell type formulae. A similarmethod allows us to discuss existence and uniqueness theorem when $\xi$ is aH\"{o}lder continuous process and $\sigma$ is only H\"{o}lder in space. Usingan It\^{o} formula for reversible semimartingales, we also show existence of asolution when $\xi$ is a Brownian motion and $\sigma$ is only continuous.
展开▼
机译:在本文中,我们讨论由$ \ mathbb {F} $-semimartingale $ M $和具有结构$ Q + R的有限三次变分过程$ \ xi $指导的一维时间非齐次随机微分方程的存在性和唯一性。 $,其中$ Q $是有限的二次方差过程,而$ R $在某种技术意义上是可以强烈预测的:该条件尤其意味着$ R $是弱Dirichlet,例如,在$ R $独立的情况下可以实现$ M $。该方法基于一种变换,该变换将扩散系数乘以$ \ xi $减至1。我们使用广义的It \ ^ {o}和It \ ^ {o} -Wentzell型公式。当$ \ xi $是连续过程而$ \ sigma $在空间中只是Hder时,一种类似的方法使我们可以讨论存在性和唯一性定理。使用可逆半semi式的It \ ^ {o}公式,当$ \ xi $是布朗运动而$ \ sigma $仅是连续运动时,我们还证明了解的存在。
展开▼