首页> 外文OA文献 >High order Chin actions in path integral Monte Carlo
【2h】

High order Chin actions in path integral Monte Carlo

机译:路径积分monte Carlo中的高阶Chin行为

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

High order actions proposed by Chin have been used for the first time in pathintegral Monte Carlo simulations. Contrarily to the Takahashi-Imada action,which is accurate to fourth order only for the trace, the Chin action is fullyfourth order, with the additional advantage that the leading fourth and sixthorder error coefficients are finely tunable. By optimizing two free parametersentering in the new action we show that the time step error dependence achievedis best fitted with a sixth order law. The computational effort per bead isincreased but the total number of beads is greatly reduced, and the efficiencyimprovement with respect to the primitive approximation is approximately afactor of ten. The Chin action is tested in a one-dimensional harmonicoscillator, a H$_2$ drop, and bulk liquid $^4$He. In all cases a sixth-orderlaw is obtained with values of the number of beads that compare well with thepair action approximation in the stringent test of superfluid $^4$He.
机译:Chin提出的高阶动作已在路径积分蒙特卡洛模拟中首次使用。与仅对轨迹精确到四阶的高桥-Imada动作相反,Chin动作是完全四阶的,另外还有一个优势,即可以精确调整前导的四阶和六阶误差系数。通过优化在新动作中输入的两个自由参数,我们表明所实现的时间步长误差依赖性最适合六阶定律。每个磁珠的计算量增加了,但是磁珠的总数大大减少了,相对于原始近似,效率提高了大约十倍。 Chin动作是在一维谐波振荡器,H $ _2 $下降和散装液体$ ^ 4 $ He中测试的。在所有情况下,均获得了六阶定律,其珠子数量的值与超流体$ ^ 4 $ He的严格测试中的配对作用近似值相比较很好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号