首页> 外文OA文献 >Quality measures for soil surveys by lognormal kriging
【2h】

Quality measures for soil surveys by lognormal kriging

机译:用对数正态克里格法进行土壤调查的质量措施

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

If we know the variogram of a random variable then we can compute the prediction error variances (kriging variances) for kriged estimates of the variable at unsampled sites from sampling grids of different design and density. In this way the kriging variance is a useful pre-survey measure of the quality of statistical predictions, which can be used to design sampling schemes to achieve target quality requirements at minimal cost. However, many soil properties are lognormally distributed, and must be transformed to logarithms before geostatistical analysis. The predicted values on the log scale are then back-transformed. It is possible to compute the prediction error variance for a prediction by this lognormal kriging procedure. However, it does not depend only on the variogram of the variable and the sampling configuration, but also on the conditional mean of the prediction. We therefore cannot use the kriging variance directly as a pre-survey measure of quality for geostatistical surveys of lognormal variables. In this paper we present an alternative. First we show how the limits of a prediction interval for a variable predicted by lognormal kriging can be expressed as dimensionless quantities, proportions of the unknown median of the conditional distribution. This scaled prediction interval can be used as a presurvey quality measure since it depends only on the sampling configuration and the variogram of the log-transformed variable. Second, we show how a similar scaled prediction interval can be computed for the median value of a lognormal variable across a block, in the case of block kriging. This approach is then illustrated using variograms of lognormally distributed data on concentration of elements in the soils of a part of eastern England.udud
机译:如果我们知道随机变量的方差图,那么我们可以从不同设计和密度的采样网格中,对未采样位置的变量的kriged估计值计算预测误差方差(kriging方差)。这样,克里金法方差是统计预测质量的一种有用的预调查度量,可用于设计抽样方案,以最小的成本实现目标质量要求。但是,许多土壤属性呈对数正态分布,在进行地统计分析之前必须将其转换为对数。然后将对数刻度上的预测值进行逆变换。可以通过此对数正态克里金程序为预测计算预测误差方差。但是,它不仅取决于变量的方差图和采样配置,还取决于预测的条件均值。因此,我们不能将克里金法方差直接用作对数正态变量的地统计学调查的质量调查前指标。在本文中,我们提出了一种替代方案。首先,我们说明如何将对数正态克里金法预测的变量的预测区间的限制表示为无量纲的数量,即条件分布的未知中值的比例。该缩放的预测间隔可以用作预调查质量度量,因为它仅取决于采样配置和对数转换变量的变异函数。其次,我们展示了在块克里金法的情况下,如何计算跨块对数正态变量的中值的相似缩放预测间隔。然后使用对数正态分布数据的方差图说明英格兰东部部分地区土壤中元素的浓度。 ud ud

著录项

  • 作者

    Lark R.M.; Lapworth D.J.;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号